Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Time Series Analysis": models, code, and papers

Entropic Dynamic Time Warping Kernels for Co-evolving Financial Time Series Analysis

Oct 21, 2019
Lu Bai, Lixin Cui, Lixiang Xu, Yue Wang, Zhihong Zhang, Edwin R. Hancock

In this work, we develop a novel framework to measure the similarity between dynamic financial networks, i.e., time-varying financial networks. Particularly, we explore whether the proposed similarity measure can be employed to understand the structural evolution of the financial networks with time. For a set of time-varying financial networks with each vertex representing the individual time series of a different stock and each edge between a pair of time series representing the absolute value of their Pearson correlation, our start point is to compute the commute time matrix associated with the weighted adjacency matrix of the network structures, where each element of the matrix can be seen as the enhanced correlation value between pairwise stocks. For each network, we show how the commute time matrix allows us to identify a reliable set of dominant correlated time series as well as an associated dominant probability distribution of the stock belonging to this set. Furthermore, we represent each original network as a discrete dominant Shannon entropy time series computed from the dominant probability distribution. With the dominant entropy time series for each pair of financial networks to hand, we develop a similarity measure based on the classical dynamic time warping framework, for analyzing the financial time-varying networks. We show that the proposed similarity measure is positive definite and thus corresponds to a kernel measure on graphs. The proposed kernel bridges the gap between graph kernels and the classical dynamic time warping framework for multiple financial time series analysis. Experiments on time-varying networks extracted through New York Stock Exchange (NYSE) database demonstrate the effectiveness of the proposed approach.

* Previously, the original version of this manuscript appeared as arXiv:1902.09947v2, that was submitted as a replacement by a mistake. Now, that article has been replaced to correct the error, and this manuscript is distinct from that article 
  
Access Paper or Ask Questions

Deep learning for time series classification

Oct 01, 2020
Hassan Ismail Fawaz

Time series analysis is a field of data science which is interested in analyzing sequences of numerical values ordered in time. Time series are particularly interesting because they allow us to visualize and understand the evolution of a process over time. Their analysis can reveal trends, relationships and similarities across the data. There exists numerous fields containing data in the form of time series: health care (electrocardiogram, blood sugar, etc.), activity recognition, remote sensing, finance (stock market price), industry (sensors), etc. Time series classification consists of constructing algorithms dedicated to automatically label time series data. The sequential aspect of time series data requires the development of algorithms that are able to harness this temporal property, thus making the existing off-the-shelf machine learning models for traditional tabular data suboptimal for solving the underlying task. In this context, deep learning has emerged in recent years as one of the most effective methods for tackling the supervised classification task, particularly in the field of computer vision. The main objective of this thesis was to study and develop deep neural networks specifically constructed for the classification of time series data. We thus carried out the first large scale experimental study allowing us to compare the existing deep methods and to position them compared other non-deep learning based state-of-the-art methods. Subsequently, we made numerous contributions in this area, notably in the context of transfer learning, data augmentation, ensembling and adversarial attacks. Finally, we have also proposed a novel architecture, based on the famous Inception network (Google), which ranks among the most efficient to date.

* PhD thesis 
  
Access Paper or Ask Questions

"The Squawk Bot": Joint Learning of Time Series and Text Data Modalities for Automated Financial Information Filtering

Dec 20, 2019
Xuan-Hong Dang, Syed Yousaf Shah, Petros Zerfos

Multimodal analysis that uses numerical time series and textual corpora as input data sources is becoming a promising approach, especially in the financial industry. However, the main focus of such analysis has been on achieving high prediction accuracy while little effort has been spent on the important task of understanding the association between the two data modalities. Performance on the time series hence receives little explanation though human-understandable textual information is available. In this work, we address the problem of given a numerical time series, and a general corpus of textual stories collected in the same period of the time series, the task is to timely discover a succinct set of textual stories associated with that time series. Towards this goal, we propose a novel multi-modal neural model called MSIN that jointly learns both numerical time series and categorical text articles in order to unearth the association between them. Through multiple steps of data interrelation between the two data modalities, MSIN learns to focus on a small subset of text articles that best align with the performance in the time series. This succinct set is timely discovered and presented as recommended documents, acting as automated information filtering, for the given time series. We empirically evaluate the performance of our model on discovering relevant news articles for two stock time series from Apple and Google companies, along with the daily news articles collected from the Thomson Reuters over a period of seven consecutive years. The experimental results demonstrate that MSIN achieves up to 84.9% and 87.2% in recalling the ground truth articles respectively to the two examined time series, far more superior to state-of-the-art algorithms that rely on conventional attention mechanism in deep learning.

  
Access Paper or Ask Questions

Novel Features for Time Series Analysis: A Complex Networks Approach

Oct 11, 2021
Vanessa Freitas Silva, Maria Eduarda Silva, Pedro Ribeiro, Fernando Silva

Time series data are ubiquitous in several domains as climate, economics and health care. Mining features from these time series is a crucial task with a multidisciplinary impact. Usually, these features are obtained from structural characteristics of time series, such as trend, seasonality and autocorrelation, sometimes requiring data transformations and parametric models. A recent conceptual approach relies on time series mapping to complex networks, where the network science methodologies can help characterize time series. In this paper, we consider two mapping concepts, visibility and transition probability and propose network topological measures as a new set of time series features. To evaluate the usefulness of the proposed features, we address the problem of time series clustering. More specifically, we propose a clustering method that consists in mapping the time series into visibility graphs and quantile graphs, calculating global topological metrics of the resulting networks, and using data mining techniques to form clusters. We apply this method to a data sets of synthetic and empirical time series. The results indicate that network-based features capture the information encoded in each of the time series models, resulting in high accuracy in a clustering task. Our results are promising and show that network analysis can be used to characterize different types of time series and that different mapping methods capture different characteristics of the time series.

  
Access Paper or Ask Questions

Constructing Time Series Shape Association Measures: Minkowski Distance and Data Standardization

May 20, 2014
Ildar Batyrshin

It is surprising that last two decades many works in time series data mining and clustering were concerned with measures of similarity of time series but not with measures of association that can be used for measuring possible direct and inverse relationships between time series. Inverse relationships can exist between dynamics of prices and sell volumes, between growth patterns of competitive companies, between well production data in oilfields, between wind velocity and air pollution concentration etc. The paper develops a theoretical basis for analysis and construction of time series shape association measures. Starting from the axioms of time series shape association measures it studies the methods of construction of measures satisfying these axioms. Several general methods of construction of such measures suitable for measuring time series shape similarity and shape association are proposed. Time series shape association measures based on Minkowski distance and data standardization methods are considered. The cosine similarity and the Pearsons correlation coefficient are obtained as particular cases of the proposed general methods that can be used also for construction of new association measures in data analysis.

* Published in Proceedings of BRICS CCI 2013, Porto de Galinhas, Brasil, 8-11 September 2013 
* Presented at BRICS CCI 2013, Porto de Galinhas, Brasil, 8-11 September 2013. Reference on Proceedings of BRICS CCI 2013 is added 
  
Access Paper or Ask Questions

A walk through of time series analysis on quantum computers

May 02, 2022
Ammar Daskin

Because of the rotational components on quantum circuits, some quantum neural networks based on variational circuits can be considered equivalent to the classical Fourier networks. In addition, they can be used to predict Fourier coefficients of continuous functions. Time series data indicates a state of a variable in time. Since some time series data can be also considered as continuous functions, we can expect quantum machine learning models to do do many data analysis tasks successfully on time series data. Therefore, it is important to investigate new quantum logics for temporal data processing and analyze intrinsic relationships of data on quantum computers. In this paper, we go through the quantum analogues of classical data preprocessing and forecasting with ARIMA models by using simple quantum operators requiring a few number of quantum gates. Then we discuss future directions and some of the tools/algorithms that can be used for temporal data analysis on quantum computers.

* conference paper 
  
Access Paper or Ask Questions

NonSTOP: A NonSTationary Online Prediction Method for Time Series

Aug 26, 2018
Christopher Xie, Avleen Bijral, Juan Lavista Ferres

We present online prediction methods for time series that let us explicitly handle nonstationary artifacts (e.g. trend and seasonality) present in most real time series. Specifically, we show that applying appropriate transformations to such time series before prediction can lead to improved theoretical and empirical prediction performance. Moreover, since these transformations are usually unknown, we employ the learning with experts setting to develop a fully online method (NonSTOP-NonSTationary Online Prediction) for predicting nonstationary time series. This framework allows for seasonality and/or other trends in univariate time series and cointegration in multivariate time series. Our algorithms and regret analysis subsume recent related work while significantly expanding the applicability of such methods. For all the methods, we provide sub-linear regret bounds using relaxed assumptions. The theoretical guarantees do not fully capture the benefits of the transformations, thus we provide a data-dependent analysis of the follow-the-leader algorithm that provides insight into the success of using such transformations. We support all of our results with experiments on simulated and real data.

  
Access Paper or Ask Questions

Explorative Data Analysis of Time Series based AlgorithmFeatures of CMA-ES Variants

Apr 16, 2021
Jacob de Nobel, Hao Wang, Thomas Bäck

In this study, we analyze behaviours of the well-known CMA-ES by extracting the time-series features on its dynamic strategy parameters. An extensive experiment was conducted on twelve CMA-ES variants and 24 test problems taken from the BBOB (Black-Box Optimization Bench-marking) testbed, where we used two different cutoff times to stop those variants. We utilized the tsfresh package for extracting the features and performed the feature selection procedure using the Boruta algorithm, resulting in 32 features to distinguish either CMA-ES variants or the problems. After measuring the number of predefined targets reached by those variants, we contrive to predict those measured values on each test problem using the feature. From our analysis, we saw that the features can classify the CMA-ES variants, or the function groups decently, and show a potential for predicting the performance of those variants. We conducted a hierarchical clustering analysis on the test problems and noticed a drastic change in the clustering outcome when comparing the longer cutoff time to the shorter one, indicating a huge change in search behaviour of the algorithm. In general, we found that with longer time series, the predictive power of the time series features increase.

  
Access Paper or Ask Questions

Time Series Using Exponential Smoothing Cells

Sep 29, 2017
Avner Abrami, Aleksandr Y. Aravkin, Younghun Kim

Time series analysis is used to understand and predict dynamic processes, including evolving demands in business, weather, markets, and biological rhythms. Exponential smoothing is used in all these domains to obtain simple interpretable models of time series and to forecast future values. Despite its popularity, exponential smoothing fails dramatically in the presence of outliers, large amounts of noise, or when the underlying time series changes. We propose a flexible model for time series analysis, using exponential smoothing cells for overlapping time windows. The approach can detect and remove outliers, denoise data, fill in missing observations, and provide meaningful forecasts in challenging situations. In contrast to classic exponential smoothing, which solves a nonconvex optimization problem over the smoothing parameters and initial state, the proposed approach requires solving a single structured convex optimization problem. Recent developments in efficient convex optimization of large-scale dynamic models make the approach tractable. We illustrate new capabilities using synthetic examples, and then use the approach to analyze and forecast noisy real-world time series. Code for the approach and experiments is publicly available.

* 8 pages, 9 figures 
  
Access Paper or Ask Questions

Clustering Time Series Data through Autoencoder-based Deep Learning Models

Apr 11, 2020
Neda Tavakoli, Sima Siami-Namini, Mahdi Adl Khanghah, Fahimeh Mirza Soltani, Akbar Siami Namin

Machine learning and in particular deep learning algorithms are the emerging approaches to data analysis. These techniques have transformed traditional data mining-based analysis radically into a learning-based model in which existing data sets along with their cluster labels (i.e., train set) are learned to build a supervised learning model and predict the cluster labels of unseen data (i.e., test set). In particular, deep learning techniques are capable of capturing and learning hidden features in a given data sets and thus building a more accurate prediction model for clustering and labeling problem. However, the major problem is that time series data are often unlabeled and thus supervised learning-based deep learning algorithms cannot be directly adapted to solve the clustering problems for these special and complex types of data sets. To address this problem, this paper introduces a two-stage method for clustering time series data. First, a novel technique is introduced to utilize the characteristics (e.g., volatility) of given time series data in order to create labels and thus be able to transform the problem from unsupervised learning into supervised learning. Second, an autoencoder-based deep learning model is built to learn and model both known and hidden features of time series data along with their created labels to predict the labels of unseen time series data. The paper reports a case study in which financial and stock time series data of selected 70 stock indices are clustered into distinct groups using the introduced two-stage procedure. The results show that the proposed procedure is capable of achieving 87.5\% accuracy in clustering and predicting the labels for unseen time series data.

  
Access Paper or Ask Questions
<<
1
2
3
4
5
6
7
8
9
10
>>