Abstract:Training advanced machine learning models demands massive datasets, resulting in prohibitive computational costs. To address this challenge, data pruning techniques identify and remove redundant training samples while preserving model performance. Yet, existing pruning techniques predominantly require a full initial training pass to identify removable samples, negating any efficiency benefits for single training runs. To overcome this limitation, we introduce a novel importance score extrapolation framework that requires training on only a small subset of data. We present two initial approaches in this framework - k-nearest neighbors and graph neural networks - to accurately predict sample importance for the entire dataset using patterns learned from this minimal subset. We demonstrate the effectiveness of our approach for 2 state-of-the-art pruning methods (Dynamic Uncertainty and TDDS), 4 different datasets (CIFAR-10, CIFAR-100, Places-365, and ImageNet), and 3 training paradigms (supervised, unsupervised, and adversarial). Our results indicate that score extrapolation is a promising direction to scale expensive score calculation methods, such as pruning, data attribution, or other tasks.
Abstract:Building generative models for relational databases (RDBs) is important for applications like privacy-preserving data release and augmenting real datasets. However, most prior work either focuses on single-table generation or relies on autoregressive factorizations that impose a fixed table order and generate tables sequentially. This approach limits parallelism, restricts flexibility in downstream applications like missing value imputation, and compounds errors due to commonly made conditional independence assumptions. We propose a fundamentally different approach: jointly modeling all tables in an RDB without imposing any order. By using a natural graph representation of RDBs, we propose the Graph-Conditional Relational Diffusion Model (GRDM). GRDM leverages a graph neural network to jointly denoise row attributes and capture complex inter-table dependencies. Extensive experiments on six real-world RDBs demonstrate that our approach substantially outperforms autoregressive baselines in modeling multi-hop inter-table correlations and achieves state-of-the-art performance on single-table fidelity metrics.
Abstract:Existing time series tokenization methods predominantly encode a constant number of samples into individual tokens. This inflexible approach can generate excessive tokens for even simple patterns like extended constant values, resulting in substantial computational overhead. Inspired by the success of byte pair encoding, we propose the first pattern-centric tokenization scheme for time series analysis. Based on a discrete vocabulary of frequent motifs, our method merges samples with underlying patterns into tokens, compressing time series adaptively. Exploiting our finite set of motifs and the continuous properties of time series, we further introduce conditional decoding as a lightweight yet powerful post-hoc optimization method, which requires no gradient computation and adds no computational overhead. On recent time series foundation models, our motif-based tokenization improves forecasting performance by 36% and boosts efficiency by 1990% on average. Conditional decoding further reduces MSE by up to 44%. In an extensive analysis, we demonstrate the adaptiveness of our tokenization to diverse temporal patterns, its generalization to unseen data, and its meaningful token representations capturing distinct time series properties, including statistical moments and trends.
Abstract:Understanding the perceptual invariances of artificial neural networks is essential for improving explainability and aligning models with human vision. Metamers - stimuli that are physically distinct yet produce identical neural activations - serve as a valuable tool for investigating these invariances. We introduce a novel approach to metamer generation by leveraging ensembles of artificial neural networks, capturing shared representational subspaces across diverse architectures, including convolutional neural networks and vision transformers. To characterize the properties of the generated metamers, we employ a suite of image-based metrics that assess factors such as semantic fidelity and naturalness. Our findings show that convolutional neural networks generate more recognizable and human-like metamers, while vision transformers produce realistic but less transferable metamers, highlighting the impact of architectural biases on representational invariances.
Abstract:As the data demand for deep learning models increases, active learning (AL) becomes essential to strategically select samples for labeling, which maximizes data efficiency and reduces training costs. Real-world scenarios necessitate the consideration of incomplete data knowledge within AL. Prior works address handling out-of-distribution (OOD) data, while another research direction has focused on category discovery. However, a combined analysis of real-world considerations combining AL with out-of-distribution data and category discovery remains unexplored. To address this gap, we propose Joint Out-of-distribution filtering and data Discovery Active learning (Joda) , to uniquely address both challenges simultaneously by filtering out OOD data before selecting candidates for labeling. In contrast to previous methods, we deeply entangle the training procedure with filter and selection to construct a common feature space that aligns known and novel categories while separating OOD samples. Unlike previous works, Joda is highly efficient and completely omits auxiliary models and training access to the unlabeled pool for filtering or selection. In extensive experiments on 18 configurations and 3 metrics, \ours{} consistently achieves the highest accuracy with the best class discovery to OOD filtering balance compared to state-of-the-art competitor approaches.
Abstract:In this paper, we argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise, such as small datasets, methodological inconsistencies, and unreliable evaluation setups. This can, at times, make it impossible to evaluate and compare attacks and defenses fairly, thereby slowing progress. We systematically analyze the LLM safety evaluation pipeline, covering dataset curation, optimization strategies for automated red-teaming, response generation, and response evaluation using LLM judges. At each stage, we identify key issues and highlight their practical impact. We also propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers. Lastly, we offer an opposing perspective, highlighting practical reasons for existing limitations. We believe that addressing the outlined problems in future research will improve the field's ability to generate easily comparable results and make measurable progress.
Abstract:Most safety training methods for large language models (LLMs) based on fine-tuning rely on dramatically changing the output distribution of the model when faced with a harmful request, shifting it from an unsafe answer to a refusal to respond. These methods inherently compromise model capabilities and might make auto-regressive models vulnerable to attacks that make likely an initial token of affirmative response. To avoid that, we propose to expand the model's vocabulary with a special token we call red flag token (<rf>) and propose to fine-tune the model to generate this token at any time harmful content is generated or about to be generated. This novel safety training method effectively augments LLMs into generative classifiers of harmfulness at all times during the conversation. This method offers several advantages: it enables the model to explicitly learn the concept of harmfulness while marginally affecting the generated distribution, thus maintaining the model's utility. It also evaluates each generated answer rather than just the input prompt and provides a stronger defence against sampling-based attacks. In addition, it simplifies the evaluation of the model's robustness and reduces correlated failures when combined with a classifier. We further show an increased robustness to long contexts, and supervised fine-tuning attacks.
Abstract:Misaligned research objectives have considerably hindered progress in adversarial robustness research over the past decade. For instance, an extensive focus on optimizing target metrics, while neglecting rigorous standardized evaluation, has led researchers to pursue ad-hoc heuristic defenses that were seemingly effective. Yet, most of these were exposed as flawed by subsequent evaluations, ultimately contributing little measurable progress to the field. In this position paper, we illustrate that current research on the robustness of large language models (LLMs) risks repeating past patterns with potentially worsened real-world implications. To address this, we argue that realigned objectives are necessary for meaningful progress in adversarial alignment. To this end, we build on established cybersecurity taxonomy to formally define differences between past and emerging threat models that apply to LLMs. Using this framework, we illustrate that progress requires disentangling adversarial alignment into addressable sub-problems and returning to core academic principles, such as measureability, reproducibility, and comparability. Although the field presents significant challenges, the fresh start on adversarial robustness offers the unique opportunity to build on past experience while avoiding previous mistakes.
Abstract:An unintended consequence of the vast pretraining of Large Language Models (LLMs) is the verbatim memorization of fragments of their training data, which may contain sensitive or copyrighted information. In recent years, unlearning has emerged as a solution to effectively remove sensitive knowledge from models after training. Yet, recent work has shown that supposedly deleted information can still be extracted by malicious actors through various attacks. Still, current attacks retrieve sets of possible candidate generations and are unable to pinpoint the output that contains the actual target information. We propose activation steering as a method for exact information retrieval from unlearned LLMs. We introduce a novel approach to generating steering vectors, named Anonymized Activation Steering. Additionally, we develop a simple word frequency method to pinpoint the correct answer among a set of candidates when retrieving unlearned information. Our evaluation across multiple unlearning techniques and datasets demonstrates that activation steering successfully recovers general knowledge (e.g., widely known fictional characters) while revealing limitations in retrieving specific information (e.g., details about non-public individuals). Overall, our results demonstrate that exact information retrieval from unlearned models is possible, highlighting a severe vulnerability of current unlearning techniques.
Abstract:Comprehensive evaluation of Large Language Models (LLMs) is an open research problem. Existing evaluations rely on deterministic point estimates generated via greedy decoding. However, we find that deterministic evaluations fail to capture the whole output distribution of a model, yielding inaccurate estimations of model capabilities. This is particularly problematic in critical contexts such as unlearning and alignment, where precise model evaluations are crucial. To remedy this, we introduce the first formal probabilistic evaluation framework in LLMs. Namely, we derive novel metrics with high-probability guarantees concerning the output distribution of a model. Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment. Through a case study focused on unlearning, we reveal that deterministic evaluations falsely indicate successful unlearning, whereas our probabilistic evaluations demonstrate that most if not all of the supposedly unlearned information remains accessible in these models. Additionally, we propose a novel unlearning loss based on entropy optimization and adaptive temperature scaling, which significantly improves unlearning in probabilistic settings on recent benchmarks. Our proposed shift from point estimates to probabilistic evaluations of output distributions represents an important step toward comprehensive evaluations of LLMs. https://github.com/yascho/probabilistic-unlearning