Abstract:The transition from traditional power grids to smart grids, significant increase in the use of renewable energy sources, and soaring electricity prices has triggered a digital transformation of the energy infrastructure that enables new, data driven, applications often supported by machine learning models. However, the majority of the developed machine learning models rely on univariate data. To date, a structured study considering the role meta-data and additional measurements resulting in multivariate data is missing. In this paper we propose a taxonomy that identifies and structures various types of data related to energy applications. The taxonomy can be used to guide application specific data model development for training machine learning models. Focusing on a household electricity forecasting application, we validate the effectiveness of the proposed taxonomy in guiding the selection of the features for various types of models. As such, we study of the effect of domain, contextual and behavioral features on the forecasting accuracy of four interpretable machine learning techniques and three openly available datasets. Finally, using a feature importance techniques, we explain individual feature contributions to the forecasting accuracy.
Abstract:Modeling propagation is the cornerstone for designing and optimizing next-generation wireless systems, with a particular emphasis on 5G and beyond era. Traditional modeling methods have long relied on statistic-based techniques to characterize propagation behavior across different environments. With the expansion of wireless communication systems, there is a growing demand for methods that guarantee the accuracy and interoperability of modeling. Artificial intelligence (AI)-based techniques, in particular, are increasingly being adopted to overcome this challenge, although the interpretability is not assured with most of these methods. Inspired by recent advancements in AI, this paper proposes a novel approach that accelerates the discovery of path loss models while maintaining interpretability. The proposed method automates the model formulation, evaluation, and refinement, facilitating model discovery. We evaluate two techniques: one based on Deep Symbolic Regression, offering full interpretability, and the second based on Kolmogorov-Arnold Networks, providing two levels of interpretability. Both approaches are evaluated on two synthetic and two real-world datasets. Our results show that Kolmogorov-Arnold Networks achieve R^2 values close to 1 with minimal prediction error, while Deep Symbolic Regression generates compact models with moderate accuracy. Moreover, on the selected examples, we demonstrate that automated methods outperform traditional methods, achieving up to 75% reduction in prediction errors, offering accurate and explainable solutions with potential to increase the efficiency of discovering next-generation path loss models.
Abstract:Time series segmentation (TSS) is one of the time series (TS) analysis techniques, that has received considerably less attention compared to other TS related tasks. In recent years, deep learning architectures have been introduced for TSS, however their reliance on sliding windows limits segmentation granularity due to fixed window sizes and strides. To overcome these challenges, we propose a new more granular TSS approach that utilizes the Weighted Dual Perspective Visbility Graph (WDPVG) TS into a graph and combines it with a Graph Attention Network (GAT). By transforming TS into graphs, we are able to capture different structural aspects of the data that would otherwise remain hidden. By utilizing the representation learning capabilities of Graph Neural Networks, our method is able to effectively identify meaningful segments within the TS. To better understand the potential of our approach, we also experimented with different TS-to-graph transformations and compared their performance. Our contributions include: a) formulating the TSS as a node classification problem on graphs; b) conducting an extensive analysis of various TS- to-graph transformations applied to TSS using benchmark datasets from the TSSB repository; c) providing the first detailed study on utilizing GNNs for analyzing graph representations of TS in the context of TSS; d) demonstrating the effectiveness of our method, which achieves an average F1 score of 0.97 across 59 diverse TSS benchmark datasets; e) outperforming the seq2point baseline method by 0.05 in terms of F1 score; and f) reducing the required training data compared to the baseline methods.
Abstract:As the complexity and number of machine learning (ML) models grows, well-documented ML models are essential for developers and companies to use or adapt them to their specific use cases. Model metadata, already present in unstructured format as model cards in online repositories such as Hugging Face, could be more structured and machine readable while also incorporating environmental impact metrics such as energy consumption and carbon footprint. Our work extends the existing State of the Art by defining a structured schema for ML model metadata focusing on machine-readable format and support for integration into a knowledge graph (KG) for better organization and querying, enabling a wider set of use cases. Furthermore, we present an example wireless localization model metadata dataset consisting of 22 models trained on 4 datasets, integrated into a Neo4j-based KG with 113 nodes and 199 relations.
Abstract:AI is foreseen to be a centerpiece in next generation wireless networks enabling enabling ubiquitous communication as well as new services. However, in real deployment, feature distribution changes may degrade the performance of AI models and lead to undesired behaviors. To counter for undetected model degradation, we propose ALERT; a method that can detect feature distribution changes and trigger model re-training that works well on two wireless network use cases: wireless fingerprinting and link anomaly detection. ALERT includes three components: representation learning, statistical testing and utility assessment. We rely on MLP for designing the representation learning component, on Kolmogorov-Smirnov and Population Stability Index tests for designing the statistical testing and a new function for utility assessment. We show the superiority of the proposed method against ten standard drift detection methods available in the literature on two wireless network use cases.
Abstract:Artificial intelligence (AI)coupled with existing Internet of Things (IoT) enables more streamlined and autonomous operations across various economic sectors. Consequently, the paradigm of Artificial Intelligence of Things (AIoT) having AI techniques at its core implies additional energy and carbon costs that may become significant with more complex neural architectures. To better understand the energy and Carbon Footprint (CF) of some AIoT components, very recent studies employ conventional metrics. However, these metrics are not designed to capture energy efficiency aspects of inference. In this paper, we propose a new metric, the Energy Cost of AIoT Lifecycle (eCAL) to capture the overall energy cost of inference over the lifecycle of an AIoT system. We devise a new methodology for determining eCAL of an AIoT system by analyzing the complexity of data manipulation in individual components involved in the AIoT lifecycle and derive the overall and per bit energy consumption. With eCAL we show that the better a model is and the more it is used, the more energy efficient an inference is. For an example AIoT configuration, eCAL for making $100$ inferences is $1.43$ times higher than for $1000$ inferences. We also evaluate the CF of the AIoT system by calculating the equivalent CO$_{2}$ emissions based on the energy consumption and the Carbon Intensity (CI) across different countries. Using 2023 renewable data, our analysis reveals that deploying an AIoT system in Germany results in emitting $4.62$ times higher CO$_2$ than in Finland, due to latter using more low-CI energy sources.
Abstract:In this paper, we investigate the integration of Retrieval Augmented Generation (RAG) with large language models (LLMs) such as ChatGPT, Gemini, and Llama to enhance the accuracy and specificity of responses to complex questions about electricity datasets. Recognizing the limitations of LLMs in generating precise and contextually relevant answers due to their dependency on the patterns in training data rather than factual understanding, we propose a solution that leverages a specialized electricity knowledge graph. This approach facilitates the retrieval of accurate, real-time data which is then synthesized with the generative capabilities of LLMs. Our findings illustrate that the RAG approach not only reduces the incidence of incorrect information typically generated by LLMs but also significantly improves the quality of the output by grounding responses in verifiable data. This paper details our methodology, presents a comparative analysis of responses with and without RAG, and discusses the implications of our findings for future applications of AI in specialized sectors like energy data analysis.
Abstract:Due to growing population and technological advances, global electricity consumption, and consequently also CO2 emissions are increasing. The residential sector makes up 25% of global electricity consumption and has great potential to increase efficiency and reduce CO2 footprint without sacrificing comfort. However, a lack of uniform consumption data at the household level spanning multiple regions hinders large-scale studies and robust multi-region model development. This paper introduces a multi-region dataset compiled from publicly available sources and presented in a uniform format. This data enables machine learning tasks such as disaggregation, demand forecasting, appliance ON/OFF classification, etc. Furthermore, we develop an RDF knowledge graph that characterizes the electricity consumption of the households and contextualizes it with household related properties enabling semantic queries and interoperability with other open knowledge bases like Wikidata and DBpedia. This structured data can be utilized to inform various stakeholders towards data-driven policy and business development.
Abstract:In recent years, the traditional feature engineering process for training machine learning models is being automated by the feature extraction layers integrated in deep learning architectures. In wireless networks, many studies were conducted in automatic learning of feature representations for domain-related challenges. However, most of the existing works assume some supervision along the learning process by using labels to optimize the model. In this paper, we investigate an approach to learning feature representations for wireless transmission clustering in a completely unsupervised manner, i.e. requiring no labels in the process. We propose a model based on convolutional neural networks that automatically learns a reduced dimensionality representation of the input data with 99.3% less components compared to a baseline principal component analysis (PCA). We show that the automatic representation learning is able to extract fine-grained clusters containing the shapes of the wireless transmission bursts, while the baseline enables only general separability of the data based on the background noise.
Abstract:Non-intrusive load monitoring (NILM) is the process of obtaining appliance-level data from a single metering point, measuring total electricity consumption of a household or a business. Appliance-level data can be directly used for demand response applications and energy management systems as well as for awareness raising and motivation for improvements in energy efficiency and reduction in the carbon footprint. Recently, classical machine learning and deep learning (DL) techniques became very popular and proved as highly effective for NILM classification, but with the growing complexity these methods are faced with significant computational and energy demands during both their training and operation. In this paper, we introduce a novel DL model aimed at enhanced multi-label classification of NILM with improved computation and energy efficiency. We also propose a testing methodology for comparison of different models using data synthesized from the measurement datasets so as to better represent real-world scenarios. Compared to the state-of-the-art, the proposed model has its carbon footprint reduced by more than 23% while providing on average approximately 8 percentage points in performance improvement when testing on data derived from REFIT and UK-DALE datasets.