Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

PrivateRec: Differentially Private Training and Serving for Federated News Recommendation

Apr 18, 2022
Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang, Yang Cao, Lingjuan Lyu, Weike Pan, Yun Chen, Hong Chen, Xing Xie

Privacy protection is an essential issue in personalized news recommendation, and federated learning can potentially mitigate the privacy concern by training personalized news recommendation models over decentralized user data.For a theoretical privacy guarantee, differential privacy is necessary. However, applying differential privacy to federated recommendation training and serving conventionally suffers from the unsatisfactory trade-off between privacy and utility due to the high-dimensional characteristics of model gradients and hidden representations. In addition, there is no formal privacy guarantee for both training and serving in federated recommendation. In this paper, we propose a unified federated news recommendation method for effective and privacy-preserving model training and online serving with differential privacy guarantees. We first clarify the notion of differential privacy over users' behavior data for both model training and online serving in the federated recommendation scenario. Next, we propose a privacy-preserving online serving mechanism under this definition with differentially private user interest decomposition. More specifically, it decomposes the high-dimensional and privacy-sensitive user embedding into a combination of public basic vectors and adds noise to the combination coefficients. In this way, it can avoid the dimension curse and improve the utility by reducing the required noise intensity for differential privacy. Besides, we design a federated recommendation model training method with differential privacy, which can avoid the dimension-dependent noise for large models via label permutation and differentially private attention modules. Experiments on real-world news recommendation datasets validate the effectiveness of our method in achieving a good trade-off between privacy protection and utility for federated news recommendations.


Using Stable Matching to Optimize the Balance between Accuracy and Diversity in Recommendation

Jun 05, 2020
Farzad Eskandanian, Bamshad Mobasher

Increasing aggregate diversity (or catalog coverage) is an important system-level objective in many recommendation domains where it may be desirable to mitigate the popularity bias and to improve the coverage of long-tail items in recommendations given to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end user, but also for other stakeholders such as item sellers or producers who desire a fair representation of their items across recommendation lists produced by the system. Unfortunately, attempts to increase aggregate diversity often result in lower recommendation accuracy for end users. Thus, addressing this problem requires an approach that can effectively manage the trade-offs between accuracy and aggregate diversity. In this work, we propose a two-sided post-processing approach in which both user and item utilities are considered. Our goal is to maximize aggregate diversity while minimizing loss in recommendation accuracy. Our solution is a generalization of the Deferred Acceptance algorithm which was proposed as an efficient algorithm to solve the well-known stable matching problem. We prove that our algorithm results in a unique user-optimal stable match between items and users. Using three recommendation datasets, we empirically demonstrate the effectiveness of our approach in comparison to several baselines. In particular, our results show that the proposed solution is quite effective in increasing aggregate diversity and item-side utility while optimizing recommendation accuracy for end users.


Large-scale Personalized Video Game Recommendation via Social-aware Contextualized Graph Neural Network

Feb 11, 2022
Liangwei Yang, Zhiwei Liu, Yu Wang, Chen Wang, Ziwei Fan, Philip S. Yu

Because of the large number of online games available nowadays, online game recommender systems are necessary for users and online game platforms. The former can discover more potential online games of their interests, and the latter can attract users to dwell longer in the platform. This paper investigates the characteristics of user behaviors with respect to the online games on the Steam platform. Based on the observations, we argue that a satisfying recommender system for online games is able to characterize: personalization, game contextualization and social connection. However, simultaneously solving all is rather challenging for game recommendation. Firstly, personalization for game recommendation requires the incorporation of the dwelling time of engaged games, which are ignored in existing methods. Secondly, game contextualization should reflect the complex and high-order properties of those relations. Last but not least, it is problematic to use social connections directly for game recommendations due to the massive noise within social connections. To this end, we propose a Social-aware Contextualized Graph Neural Recommender System (SCGRec), which harnesses three perspectives to improve game recommendation. We conduct a comprehensive analysis of users' online game behaviors, which motivates the necessity of handling those three characteristics in the online game recommendation.


Cold-start Sequential Recommendation via Meta Learner

Dec 10, 2020
Yujia Zheng, Siyi Liu, Zekun Li, Shu Wu

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in [email protected] over state-of-the-art baseline methods.

* Accepted at AAAI 2021 

Neural Hybrid Recommender: Recommendation needs collaboration

Sep 29, 2019
Ezgi Yıldırım, Payam Azad, Şule Gündüz Öğüdücü

In recent years, deep learning has gained an indisputable success in computer vision, speech recognition, and natural language processing. After its rising success on these challenging areas, it has been studied on recommender systems as well, but mostly to include content features into traditional methods. In this paper, we introduce a generalized neural network-based recommender framework that is easily extendable by additional networks. This framework named NHR, short for Neural Hybrid Recommender allows us to include more elaborate information from the same and different data sources. We have worked on item prediction problems, but the framework can be used for rating prediction problems as well with a single change on the loss function. To evaluate the effect of such a framework, we have tested our approach on benchmark and not yet experimented datasets. The results in these real-world datasets show the superior performance of our approach in comparison with the state-of-the-art methods.

* Accepted for ECML PKDD 2019 International Workshop on New Frontiers in Mining Complex Patterns 

BLOB : A Probabilistic Model for Recommendation that Combines Organic and Bandit Signals

Aug 28, 2020
Otmane Sakhi, Stephen Bonner, David Rohde, Flavian Vasile

A common task for recommender systems is to build a pro le of the interests of a user from items in their browsing history and later to recommend items to the user from the same catalog. The users' behavior consists of two parts: the sequence of items that they viewed without intervention (the organic part) and the sequences of items recommended to them and their outcome (the bandit part). In this paper, we propose Bayesian Latent Organic Bandit model (BLOB), a probabilistic approach to combine the 'or-ganic' and 'bandit' signals in order to improve the estimation of recommendation quality. The bandit signal is valuable as it gives direct feedback of recommendation performance, but the signal quality is very uneven, as it is highly concentrated on the recommendations deemed optimal by the past version of the recom-mender system. In contrast, the organic signal is typically strong and covers most items, but is not always relevant to the recommendation task. In order to leverage the organic signal to e ciently learn the bandit signal in a Bayesian model we identify three fundamental types of distances, namely action-history, action-action and history-history distances. We implement a scalable approximation of the full model using variational auto-encoders and the local re-paramerization trick. We show using extensive simulation studies that our method out-performs or matches the value of both state-of-the-art organic-based recommendation algorithms, and of bandit-based methods (both value and policy-based) both in organic and bandit-rich environments.

* 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 2020, San Diego, United States 

A Jointly Learned Context-Aware Place of Interest Embedding for Trip Recommendations

Aug 24, 2018
Jiayuan He, Jianzhong Qi, Kotagiri Ramamohanarao

Trip recommendation is an important location-based service that helps relieve users from the time and efforts for trip planning. It aims to recommend a sequence of places of interest (POIs) for a user to visit that maximizes the user's satisfaction. When adding a POI to a recommended trip, it is essential to understand the context of the recommendation, including the POI popularity, other POIs co-occurring in the trip, and the preferences of the user. These contextual factors are learned separately in existing studies, while in reality, they impact jointly on a user's choice of a POI to visit. In this study, we propose a POI embedding model to jointly learn the impact of these contextual factors. We call the learned POI embedding a context-aware POI embedding. To showcase the effectiveness of this embedding, we apply it to generate trip recommendations given a user and a time budget. We propose two trip recommendation algorithms based on our context-aware POI embedding. The first algorithm finds the exact optimal trip by transforming and solving the trip recommendation problem as an integer linear programming problem. To achieve a high computation efficiency, the second algorithm finds a heuristically optimal trip based on adaptive large neighborhood search. We perform extensive experiments on real datasets. The results show that our proposed algorithms consistently outperform state-of-the-art algorithms in trip recommendation quality, with an advantage of up to 43% in F1-score.


Joint Text Embedding for Personalized Content-based Recommendation

Jun 23, 2017
Ting Chen, Liangjie Hong, Yue Shi, Yizhou Sun

Learning a good representation of text is key to many recommendation applications. Examples include news recommendation where texts to be recommended are constantly published everyday. However, most existing recommendation techniques, such as matrix factorization based methods, mainly rely on interaction histories to learn representations of items. While latent factors of items can be learned effectively from user interaction data, in many cases, such data is not available, especially for newly emerged items. In this work, we aim to address the problem of personalized recommendation for completely new items with text information available. We cast the problem as a personalized text ranking problem and propose a general framework that combines text embedding with personalized recommendation. Users and textual content are embedded into latent feature space. The text embedding function can be learned end-to-end by predicting user interactions with items. To alleviate sparsity in interaction data, and leverage large amount of text data with little or no user interactions, we further propose a joint text embedding model that incorporates unsupervised text embedding with a combination module. Experimental results show that our model can significantly improve the effectiveness of recommendation systems on real-world datasets.

* typo fixes 

Evaluating Tag Recommendations for E-Book Annotation Using a Semantic Similarity Metric

Aug 12, 2019
Emanuel Lacic, Dominik Kowald, Dieter Theiler, Matthias Traub, Lucky Kuffer, Stefanie Lindstaedt, Elisabeth Lex

In this paper, we present our work to support publishers and editors in finding descriptive tags for e-books through tag recommendations. We propose a hybrid tag recommendation system for e-books, which leverages search query terms from Amazon users and e-book metadata, which is assigned by publishers and editors. Our idea is to mimic the vocabulary of users in Amazon, who search for and review e-books, and to combine these search terms with editor tags in a hybrid tag recommendation approach. In total, we evaluate 19 tag recommendation algorithms on the review content of Amazon users, which reflects the readers' vocabulary. Our results show that we can improve the performance of tag recommender systems for e-books both concerning tag recommendation accuracy, diversity as well as a novel semantic similarity metric, which we also propose in this paper.

* REVEAL Workshop @ RecSys'2019, Kopenhagen, Denmark