Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
3D object detectors are fundamental components of perception systems in autonomous vehicles. While these detectors achieve remarkable performance on standard autonomous driving benchmarks, they often struggle to generalize across different domains - for instance, a model trained in the U.S. may perform poorly in regions like Asia or Europe. This paper presents a novel lidar domain adaptation method based on neuron activation patterns, demonstrating that state-of-the-art performance can be achieved by annotating only a small, representative, and diverse subset of samples from the target domain if they are correctly selected. The proposed approach requires very small annotation budget and, when combined with post-training techniques inspired by continual learning prevent weight drift from the original model. Empirical evaluation shows that the proposed domain adaptation approach outperforms both linear probing and state-of-the-art domain adaptation techniques.
Object detection in fire rescue scenarios is importance for command and decision-making in firefighting operations. However, existing research still suffers from two main limitations. First, current work predominantly focuses on environments such as mountainous or forest areas, while paying insufficient attention to urban rescue scenes, which are more frequent and structurally complex. Second, existing detection systems include a limited number of classes, such as flames and smoke, and lack a comprehensive system covering key targets crucial for command decisions, such as fire trucks and firefighters. To address the above issues, this paper first constructs a new dataset named "FireRescue" for rescue command, which covers multiple rescue scenarios, including urban, mountainous, forest, and water areas, and contains eight key categories such as fire trucks and firefighters, with a total of 15,980 images and 32,000 bounding boxes. Secondly, to tackle the problems of inter-class confusion and missed detection of small targets caused by chaotic scenes, diverse targets, and long-distance shooting, this paper proposes an improved model named FRS-YOLO. On the one hand, the model introduces a plug-and-play multidi-mensional collaborative enhancement attention module, which enhances the discriminative representation of easily confused categories (e.g., fire trucks vs. ordinary trucks) through cross-dimensional feature interaction. On the other hand, it integrates a dynamic feature sampler to strengthen high-response foreground features, thereby mitigating the effects of smoke occlusion and background interference. Experimental results demonstrate that object detection in fire rescue scenarios is highly challenging, and the proposed method effectively improves the detection performance of YOLO series models in this context.
This report presents the design and implementation of a semi-automated data annotation pipeline developed within the DARTS project, whose goal is to create a large-scale, multimodal dataset of driving scenarios recorded in Polish conditions. Manual annotation of such heterogeneous data is both costly and time-consuming. To address this challenge, the proposed solution adopts a human-in-the-loop approach that combines artificial intelligence with human expertise to reduce annotation cost and duration. The system automatically generates initial annotations, enables iterative model retraining, and incorporates data anonymization and domain adaptation techniques. At its core, the tool relies on 3D object detection algorithms to produce preliminary annotations. Overall, the developed tools and methodology result in substantial time savings while ensuring consistent, high-quality annotations across different sensor modalities. The solution directly supports the DARTS project by accelerating the preparation of large annotated dataset in the project's standardized format, strengthening the technological base for autonomous vehicle research in Poland.
Fine-grained remote sensing datasets often use hierarchical label structures to differentiate objects in a coarse-to-fine manner, with each object annotated across multiple levels. However, embedding this semantic hierarchy into the representation learning space to improve fine-grained detection performance remains challenging. Previous studies have applied supervised contrastive learning at different hierarchical levels to group objects under the same parent class while distinguishing sibling subcategories. Nevertheless, they overlook two critical issues: (1) imbalanced data distribution across the label hierarchy causes high-frequency classes to dominate the learning process, and (2) learning semantic relationships among categories interferes with class-agnostic localization. To address these issues, we propose a balanced hierarchical contrastive loss combined with a decoupled learning strategy within the detection transformer (DETR) framework. The proposed loss introduces learnable class prototypes and equilibrates gradients contributed by different classes at each hierarchical level, ensuring that each hierarchical class contributes equally to the loss computation in every mini-batch. The decoupled strategy separates DETR's object queries into classification and localization sets, enabling task-specific feature extraction and optimization. Experiments on three fine-grained datasets with hierarchical annotations demonstrate that our method outperforms state-of-the-art approaches.
Existing Real-Time Object Detection (RTOD) methods commonly adopt YOLO-like architectures for their favorable trade-off between accuracy and speed. However, these models rely on static dense computation that applies uniform processing to all inputs, misallocating representational capacity and computational resources such as over-allocating on trivial scenes while under-serving complex ones. This mismatch results in both computational redundancy and suboptimal detection performance. To overcome this limitation, we propose YOLO-Master, a novel YOLO-like framework that introduces instance-conditional adaptive computation for RTOD. This is achieved through a Efficient Sparse Mixture-of-Experts (ES-MoE) block that dynamically allocates computational resources to each input according to its scene complexity. At its core, a lightweight dynamic routing network guides expert specialization during training through a diversity enhancing objective, encouraging complementary expertise among experts. Additionally, the routing network adaptively learns to activate only the most relevant experts, thereby improving detection performance while minimizing computational overhead during inference. Comprehensive experiments on five large-scale benchmarks demonstrate the superiority of YOLO-Master. On MS COCO, our model achieves 42.4% AP with 1.62ms latency, outperforming YOLOv13-N by +0.8% mAP and 17.8% faster inference. Notably, the gains are most pronounced on challenging dense scenes, while the model preserves efficiency on typical inputs and maintains real-time inference speed. Code will be available.
The rapid advancement of autonomous systems, including self-driving vehicles and drones, has intensified the need to forge true Spatial Intelligence from multi-modal onboard sensor data. While foundation models excel in single-modal contexts, integrating their capabilities across diverse sensors like cameras and LiDAR to create a unified understanding remains a formidable challenge. This paper presents a comprehensive framework for multi-modal pre-training, identifying the core set of techniques driving progress toward this goal. We dissect the interplay between foundational sensor characteristics and learning strategies, evaluating the role of platform-specific datasets in enabling these advancements. Our central contribution is the formulation of a unified taxonomy for pre-training paradigms: ranging from single-modality baselines to sophisticated unified frameworks that learn holistic representations for advanced tasks like 3D object detection and semantic occupancy prediction. Furthermore, we investigate the integration of textual inputs and occupancy representations to facilitate open-world perception and planning. Finally, we identify critical bottlenecks, such as computational efficiency and model scalability, and propose a roadmap toward general-purpose multi-modal foundation models capable of achieving robust Spatial Intelligence for real-world deployment.
Object detection is one of the key target tasks of interest in the context of civil and military applications. In particular, the real-world deployment of target detection methods is pivotal in the decision-making process during military command and reconnaissance. However, current domain adaptive object detection algorithms consider adapting one domain to another similar one only within the scope of natural or autonomous driving scenes. Since military domains often deal with a mixed variety of environments, detecting objects from multiple varying target domains poses a greater challenge. Several studies for armored military target detection have made use of synthetic aperture radar (SAR) data due to its robustness to all weather, long range, and high-resolution characteristics. Nevertheless, the costs of SAR data acquisition and processing are still much higher than those of the conventional RGB camera, which is a more affordable alternative with significantly lower data processing time. Furthermore, the lack of military target detection datasets limits the use of such a low-cost approach. To mitigate these issues, we propose to generate RGB-based synthetic data using a photorealistic visual tool, Unreal Engine, for military target detection in a cross-domain setting. To this end, we conducted synthetic-to-real transfer experiments by training our synthetic dataset and validating on our web-collected real military target datasets. We benchmark the state-of-the-art domain adaptation methods distinguished by the degree of supervision on our proposed train-val dataset pair, and find that current methods using minimal hints on the image (e.g., object class) achieve a substantial improvement over unsupervised or semi-supervised DA methods. From these observations, we recognize the current challenges that remain to be overcome.
Semi-supervised 3D object detection, aiming to explore unlabeled data for boosting 3D object detectors, has emerged as an active research area in recent years. Some previous methods have shown substantial improvements by either employing heterogeneous teacher models to provide high-quality pseudo labels or enforcing feature-perspective consistency between the teacher and student networks. However, these methods overlook the fact that the model usually tends to exhibit low sensitivity to object geometries with limited labeled data, making it difficult to capture geometric information, which is crucial for enhancing the student model's ability in object perception and localization. In this paper, we propose GeoTeacher to enhance the student model's ability to capture geometric relations of objects with limited training data, especially unlabeled data. We design a keypoint-based geometric relation supervision module that transfers the teacher model's knowledge of object geometry to the student, thereby improving the student's capability in understanding geometric relations. Furthermore, we introduce a voxel-wise data augmentation strategy that increases the diversity of object geometries, thereby further improving the student model's ability to comprehend geometric structures. To preserve the integrity of distant objects during augmentation, we incorporate a distance-decay mechanism into this strategy. Moreover, GeoTeacher can be combined with different SS3D methods to further improve their performance. Extensive experiments on the ONCE and Waymo datasets indicate the effectiveness and generalization of our method and we achieve the new state-of-the-art results. Code will be available at https://github.com/SII-Whaleice/GeoTeacher
The development of effective training and evaluation strategies is critical. Conventional methods for assessing surgical proficiency typically rely on expert supervision, either through onsite observation or retrospective analysis of recorded procedures. However, these approaches are inherently subjective, susceptible to inter-rater variability, and require substantial time and effort from expert surgeons. These demands are often impractical in low- and middle-income countries, thereby limiting the scalability and consistency of such methods across training programs. To address these limitations, we propose a novel AI-driven framework for the automated assessment of microanastomosis performance. The system integrates a video transformer architecture based on TimeSformer, improved with hierarchical temporal attention and weighted spatial attention mechanisms, to achieve accurate action recognition within surgical videos. Fine-grained motion features are then extracted using a YOLO-based object detection and tracking method, allowing for detailed analysis of instrument kinematics. Performance is evaluated along five aspects of microanastomosis skill, including overall action execution, motion quality during procedure-critical actions, and general instrument handling. Experimental validation using a dataset of 58 expert-annotated videos demonstrates the effectiveness of the system, achieving 87.7% frame-level accuracy in action segmentation that increased to 93.62% with post-processing, and an average classification accuracy of 76% in replicating expert assessments across all skill aspects. These findings highlight the system's potential to provide objective, consistent, and interpretable feedback, thereby enabling more standardized, data-driven training and evaluation in surgical education.
Image-based 3D object detection aims to identify and localize objects in 3D space using only RGB images, eliminating the need for expensive depth sensors required by point cloud-based methods. Existing image-based approaches face two critical challenges: methods achieving high accuracy typically require dense 3D supervision, while those operating without such supervision struggle to extract accurate geometry from images alone. In this paper, we present GVSynergy-Det, a novel framework that enhances 3D detection through synergistic Gaussian-Voxel representation learning. Our key insight is that continuous Gaussian and discrete voxel representations capture complementary geometric information: Gaussians excel at modeling fine-grained surface details while voxels provide structured spatial context. We introduce a dual-representation architecture that: 1) adapts generalizable Gaussian Splatting to extract complementary geometric features for detection tasks, and 2) develops a cross-representation enhancement mechanism that enriches voxel features with geometric details from Gaussian fields. Unlike previous methods that either rely on time-consuming per-scene optimization or utilize Gaussian representations solely for depth regularization, our synergistic strategy directly leverages features from both representations through learnable integration, enabling more accurate object localization. Extensive experiments demonstrate that GVSynergy-Det achieves state-of-the-art results on challenging indoor benchmarks, significantly outperforming existing methods on both ScanNetV2 and ARKitScenes datasets, all without requiring any depth or dense 3D geometry supervision (e.g., point clouds or TSDF).