What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Jun 14, 2025
Abstract:Real-world object detection is a challenging task where the captured images/videos often suffer from complex degradations due to various adverse weather conditions such as rain, fog, snow, low-light, etc. Despite extensive prior efforts, most existing methods are designed for one specific type of adverse weather with constraints of poor generalization, under-utilization of visual features while handling various image degradations. Leveraging a theoretical analysis on how critical visual details are lost in adverse-weather images, we design UniDet-D, a unified framework that tackles the challenge of object detection under various adverse weather conditions, and achieves object detection and image restoration within a single network. Specifically, the proposed UniDet-D incorporates a dynamic spectral attention mechanism that adaptively emphasizes informative spectral components while suppressing irrelevant ones, enabling more robust and discriminative feature representation across various degradation types. Extensive experiments show that UniDet-D achieves superior detection accuracy across different types of adverse-weather degradation. Furthermore, UniDet-D demonstrates superior generalization towards unseen adverse weather conditions such as sandstorms and rain-fog mixtures, highlighting its great potential for real-world deployment.
Via

Jun 13, 2025
Abstract:Image-based 3D object detection is an inevitable part of autonomous driving because cheap onboard cameras are already available in most modern cars. Because of the accurate depth information, currently, most state-of-the-art 3D object detectors heavily rely on LiDAR data. In this paper, we propose a pipeline which lifts the results of existing vision-based 2D algorithms to 3D detections using only cameras as a cost-effective alternative to LiDAR. In contrast to existing approaches, we focus not only on cars but on all types of road users. To the best of our knowledge, we are the first using a 2D CNN to process the point cloud for each 2D detection to keep the computational effort as low as possible. Our evaluation on the challenging KITTI 3D object detection benchmark shows results comparable to state-of-the-art image-based approaches while having a runtime of only a third.
* 2020 IEEE 23rd International Conference on Information Fusion
(FUSION)
* https://ieeexplore.ieee.org/document/9190325
Via

Jun 17, 2025
Abstract:The convergence of robotics and virtual reality (VR) has enabled safer and more efficient workflows in high-risk laboratory settings, particularly virology labs. As biohazard complexity increases, minimizing direct human exposure while maintaining precision becomes essential. We propose GAMORA (Gesture Articulated Meta Operative Robotic Arm), a novel VR-guided robotic system that enables remote execution of hazardous tasks using natural hand gestures. Unlike existing scripted automation or traditional teleoperation, GAMORA integrates the Oculus Quest 2, NVIDIA Jetson Nano, and Robot Operating System (ROS) to provide real-time immersive control, digital twin simulation, and inverse kinematics-based articulation. The system supports VR-based training and simulation while executing precision tasks in physical environments via a 3D-printed robotic arm. Inverse kinematics ensure accurate manipulation for delicate operations such as specimen handling and pipetting. The pipeline includes Unity-based 3D environment construction, real-time motion planning, and hardware-in-the-loop testing. GAMORA achieved a mean positional discrepancy of 2.2 mm (improved from 4 mm), pipetting accuracy within 0.2 mL, and repeatability of 1.2 mm across 50 trials. Integrated object detection via YOLOv8 enhances spatial awareness, while energy-efficient operation (50% reduced power output) ensures sustainable deployment. The system's digital-physical feedback loop enables safe, precise, and repeatable automation of high-risk lab tasks. GAMORA offers a scalable, immersive solution for robotic control and biosafety in biomedical research environments.
Via

Jun 16, 2025
Abstract:Multi-object tracking (MOT) is a core task in computer vision that involves detecting objects in video frames and associating them across time. The rise of deep learning has significantly advanced MOT, particularly within the tracking-by-detection paradigm, which remains the dominant approach. Advancements in modern deep learning-based methods accelerated in 2022 with the introduction of ByteTrack for tracking-by-detection and MOTR for end-to-end tracking. Our survey provides an in-depth analysis of deep learning-based MOT methods, systematically categorizing tracking-by-detection approaches into five groups: joint detection and embedding, heuristic-based, motion-based, affinity learning, and offline methods. In addition, we examine end-to-end tracking methods and compare them with existing alternative approaches. We evaluate the performance of recent trackers across multiple benchmarks and specifically assess their generality by comparing results across different domains. Our findings indicate that heuristic-based methods achieve state-of-the-art results on densely populated datasets with linear object motion, while deep learning-based association methods, in both tracking-by-detection and end-to-end approaches, excel in scenarios with complex motion patterns.
* 39 pages
Via

Jun 13, 2025
Abstract:In recent years, the development of interconnected devices has expanded in many fields, from infotainment to education and industrial applications. This trend has been accelerated by the increased number of sensors and accessibility to powerful hardware and software. One area that significantly benefits from these advancements is Teleoperated Driving (TD). In this scenario, a controller drives safely a vehicle from remote leveraging sensors data generated onboard the vehicle, and exchanged via Vehicle-to-Everything (V2X) communications. In this work, we tackle the problem of detecting the presence of cars and pedestrians from point cloud data to enable safe TD operations. More specifically, we exploit the SELMA dataset, a multimodal, open-source, synthetic dataset for autonomous driving, that we expanded by including the ground-truth bounding boxes of 3D objects to support object detection. We analyze the performance of state-of-the-art compression algorithms and object detectors under several metrics, including compression efficiency, (de)compression and inference time, and detection accuracy. Moreover, we measure the impact of compression and detection on the V2X network in terms of data rate and latency with respect to 3GPP requirements for TD applications.
* Submitted to IEEE Transactions on Intelligent Transportation Systems
Via

Jun 17, 2025
Abstract:Accurate video annotation plays a vital role in modern retail applications, including customer behavior analysis, product interaction detection, and in-store activity recognition. However, conventional annotation methods heavily rely on time-consuming manual labeling by human annotators, introducing non-robust frame selection and increasing operational costs. To address these challenges in the retail domain, we propose a deep learning-based approach that automates key-frame identification in retail videos and provides automatic annotations of products and customers. Our method leverages deep neural networks to learn discriminative features by embedding video frames and incorporating object detection-based techniques tailored for retail environments. Experimental results showcase the superiority of our approach over traditional methods, achieving accuracy comparable to human annotator labeling while enhancing the overall efficiency of retail video annotation. Remarkably, our approach leads to an average of 2 times cost savings in video annotation. By allowing human annotators to verify/adjust less than 5% of detected frames in the video dataset, while automating the annotation process for the remaining frames without reducing annotation quality, retailers can significantly reduce operational costs. The automation of key-frame detection enables substantial time and effort savings in retail video labeling tasks, proving highly valuable for diverse retail applications such as shopper journey analysis, product interaction detection, and in-store security monitoring.
Via

Jun 16, 2025
Abstract:Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
Via

Jun 15, 2025
Abstract:Video object removal and inpainting are critical tasks in the fields of computer vision and multimedia processing, aimed at restoring missing or corrupted regions in video sequences. Traditional methods predominantly rely on flow-based propagation and spatio-temporal Transformers, but these approaches face limitations in effectively leveraging long-term temporal features and ensuring temporal consistency in the completion results, particularly when dealing with large masks. Consequently, performance on extensive masked areas remains suboptimal. To address these challenges, this paper introduces a novel video inpainting approach leveraging the Diffusion Transformer (DiT). DiT synergistically combines the advantages of diffusion models and transformer architectures to maintain long-term temporal consistency while ensuring high-quality inpainting results. We propose a Circular Position-Shift strategy to further enhance long-term temporal consistency during the inference stage. Additionally, the proposed method automatically detects objects within videos, interactively removes specified objects, and generates corresponding prompts. In terms of processing speed, it takes only 180 seconds (testing on one NVIDIA A100 GPU) to complete a video with a resolution of $1080 \times 1920$ with 121 frames without any acceleration method. Experimental results indicate that the proposed method demonstrates superior performance in content fidelity, texture restoration, and temporal consistency. Project page: https://jieliu95.github.io/EraserDiT_demo.
Via

Jun 17, 2025
Abstract:Compliance is a critical parameter for describing objects in engineering, agriculture, and biomedical applications. Traditional compliance detection methods are limited by their lack of portability and scalability, rely on specialized, often expensive equipment, and are unsuitable for robotic applications. Moreover, existing neural network-based approaches using vision-based tactile sensors still suffer from insufficient prediction accuracy. In this paper, we propose two models based on Long-term Recurrent Convolutional Networks (LRCNs) and Transformer architectures that leverage RGB tactile images and other information captured by the vision-based sensor GelSight to predict compliance metrics accurately. We validate the performance of these models using multiple metrics and demonstrate their effectiveness in accurately estimating compliance. The proposed models exhibit significant performance improvement over the baseline. Additionally, we investigated the correlation between sensor compliance and object compliance estimation, which revealed that objects that are harder than the sensor are more challenging to estimate.
* Accepted in the IEEE International Conference on Development and
Learning (ICDL). The paper contains 8 pages and 7 figures
Via

Jun 12, 2025
Abstract:Unsupervised Domain Adaptation (UDA) has shown promise in effectively alleviating the performance degradation caused by domain gaps between source and target domains, and it can potentially be generalized to UAV object detection in adverse scenes. However, existing UDA studies are based on natural images or clear UAV imagery, and research focused on UAV imagery in adverse conditions is still in its infancy. Moreover, due to the unique perspective of UAVs and the interference from adverse conditions, these methods often fail to accurately align features and are influenced by limited or noisy pseudo-labels. To address this, we propose the first benchmark for UAV object detection in adverse scenes, the Statistical Feedback-Driven Threshold and Mask Adjustment Teacher-Student Framework (SF-TMAT). Specifically, SF-TMAT introduces a design called Dynamic Step Feedback Mask Adjustment Autoencoder (DSFMA), which dynamically adjusts the mask ratio and reconstructs feature maps by integrating training progress and loss feedback. This approach dynamically adjusts the learning focus at different training stages to meet the model's needs for learning features at varying levels of granularity. Additionally, we propose a unique Variance Feedback Smoothing Threshold (VFST) strategy, which statistically computes the mean confidence of each class and dynamically adjusts the selection threshold by incorporating a variance penalty term. This strategy improves the quality of pseudo-labels and uncovers potentially valid labels, thus mitigating domain bias. Extensive experiments demonstrate the superiority and generalization capability of the proposed SF-TMAT in UAV object detection under adverse scene conditions. The Code is released at https://github.com/ChenHuyoo .
* The manuscript has been accepted by ISPRS Journal of Photogrammetry
and Remote Sensing
Via
