Abstract:Event cameras offer microsecond latency, high dynamic range, and low power consumption, making them ideal for real-time robotic perception under challenging conditions such as motion blur, occlusion, and illumination changes. However, despite their advantages, synthetic event-based vision remains largely unexplored in mainstream robotics simulators. This lack of simulation setup hinders the evaluation of event-driven approaches for robotic manipulation and navigation tasks. This work presents an open-source, user-friendly v2e robotics operating system (ROS) package for Gazebo simulation that enables seamless event stream generation from RGB camera feeds. The package is used to investigate event-based robotic policies (ERP) for real-time navigation and manipulation. Two representative scenarios are evaluated: (1) object following with a mobile robot and (2) object detection and grasping with a robotic manipulator. Transformer-based ERPs are trained by behavior cloning and compared to RGB-based counterparts under various operating conditions. Experimental results show that event-guided policies consistently deliver competitive advantages. The results highlight the potential of event-driven perception to improve real-time robotic navigation and manipulation, providing a foundation for broader integration of event cameras into robotic policy learning. The GitHub repo for the dataset and code: https://eventbasedvision.github.io/SEBVS/
Abstract:Event cameras are gaining traction in traffic monitoring applications due to their low latency, high temporal resolution, and energy efficiency, which makes them well-suited for real-time object detection at traffic intersections. However, the development of robust event-based detection models is hindered by the limited availability of annotated real-world datasets. To address this, several simulation tools have been developed to generate synthetic event data. Among these, the CARLA driving simulator includes a built-in dynamic vision sensor (DVS) module that emulates event camera output. Despite its potential, the sim-to-real gap for event-based object detection remains insufficiently studied. In this work, we present a systematic evaluation of this gap by training a recurrent vision transformer model exclusively on synthetic data generated using CARLAs DVS and testing it on varying combinations of synthetic and real-world event streams. Our experiments show that models trained solely on synthetic data perform well on synthetic-heavy test sets but suffer significant performance degradation as the proportion of real-world data increases. In contrast, models trained on real-world data demonstrate stronger generalization across domains. This study offers the first quantifiable analysis of the sim-to-real gap in event-based object detection using CARLAs DVS. Our findings highlight limitations in current DVS simulation fidelity and underscore the need for improved domain adaptation techniques in neuromorphic vision for traffic monitoring.