For self-triggered readout of SiPM sum signals, a waveform classification can aid a simple threshold trigger to reliably extract calorimetric particle hit information online at an early stage and thus reduce the volume of transmitted data. Typically, the ADC data acquisition is based on FPGAs for edge data processing. In this study, we consider look-up-table-based neural-networks and address challenges of binary multi-layer neural networks' layout, footprint, performance and training. We show that these structures can be trained using a genetic algorithm and achieve the inference latency compatible with dead-time free processing online.
Flow boiling is an efficient heat transfer mechanism capable of dissipating high heat loads with minimal temperature variation, making it an ideal thermal management method. However, sudden shifts between flow regimes can disrupt thermal performance and system reliability, highlighting the need for accurate and low-latency real-time monitoring. Conventional optical imaging methods are limited by high computational demands and insufficient temporal resolution, making them inadequate for capturing transient flow behavior. To address this, we propose a real-time framework based on signals from neuromorphic sensors for flow regime classification. Neuromorphic sensors detect changes in brightness at individual pixels, which typically correspond to motion at edges, enabling fast and efficient detection without full-frame reconstruction, providing event-based information. We develop five classification models using both traditional image data and event-based data, demonstrating that models leveraging event data outperform frame-based approaches due to their sensitivity to dynamic flow features. Among these models, the event-based long short-term memory model provides the best balance between accuracy and speed, achieving 97.6% classification accuracy with a processing time of 0.28 ms. Our asynchronous processing pipeline supports continuous, low-latency predictions and delivers stable output through a majority voting mechanisms, enabling reliable real-time feedback for experimental control and intelligent thermal management.
Graph network-based simulators (GNS) have demonstrated strong potential for learning particle-based physics (such as fluids, deformable solids, and granular flows) while generalizing to unseen geometries due to their inherent inductive biases. However, existing models are typically trained for a single material type and fail to generalize across distinct constitutive behaviors, limiting their applicability in real-world engineering settings. Using granular flows as a running example, we propose a parameter-efficient conditioning mechanism that makes the GNS model adaptive to material parameters. We identify that sensitivity to material properties is concentrated in the early message-passing (MP) layers, a finding we link to the local nature of constitutive models (e.g., Mohr-Coulomb) and their effects on information propagation. We empirically validate this by showing that fine-tuning only the first few (1-5) of 10 MP layers of a pretrained model achieves comparable test performance as compared to fine-tuning the entire network. Building on this insight, we propose a parameter-efficient Feature-wise Linear Modulation (FiLM) conditioning mechanism designed to specifically target these early layers. This approach produces accurate long-term rollouts on unseen, interpolated, or moderately extrapolated values (e.g., up to 2.5 degrees for friction angle and 0.25 kPa for cohesion) when trained exclusively on as few as 12 short simulation trajectories from new materials, representing a 5-fold data reduction compared to a baseline multi-task learning method. Finally, we validate the model's utility by applying it to an inverse problem, successfully identifying unknown cohesion parameters from trajectory data. This approach enables the use of GNS in inverse design and closed-loop control tasks where material properties are treated as design variables.
Recent advances in 3D point cloud transformers have led to state-of-the-art results in tasks such as semantic segmentation and reconstruction. However, these models typically rely on dense token representations, incurring high computational and memory costs during training and inference. In this work, we present the finding that tokens are remarkably redundant, leading to substantial inefficiency. We introduce gitmerge3D, a globally informed graph token merging method that can reduce the token count by up to 90-95% while maintaining competitive performance. This finding challenges the prevailing assumption that more tokens inherently yield better performance and highlights that many current models are over-tokenized and under-optimized for scalability. We validate our method across multiple 3D vision tasks and show consistent improvements in computational efficiency. This work is the first to assess redundancy in large-scale 3D transformer models, providing insights into the development of more efficient 3D foundation architectures. Our code and checkpoints are publicly available at https://gitmerge3d.github.io
As cyber threats continue to grow in complexity, traditional security mechanisms struggle to keep up. Large language models (LLMs) offer significant potential in cybersecurity due to their advanced capabilities in text processing and generation. This paper explores the use of LLMs with retrieval-augmented generation (RAG) to obtain threat intelligence by combining real-time information retrieval with domain-specific data. The proposed system, RAGRecon, uses a LLM with RAG to answer questions about cybersecurity threats. Moreover, it makes this form of Artificial Intelligence (AI) explainable by generating and visually presenting to the user a knowledge graph for every reply. This increases the transparency and interpretability of the reasoning of the model, allowing analysts to better understand the connections made by the system based on the context recovered by the RAG system. We evaluated RAGRecon experimentally with two datasets and seven different LLMs and the responses matched the reference responses more than 91% of the time for the best combinations.
This research category full paper investigates how community college instructors evaluate interactive, no-code AI literacy resources designed for non-STEM learners. As artificial intelligence becomes increasingly integrated into everyday technologies, AI literacy - the ability to evaluate AI systems, communicate with them, and understand their broader impacts - has emerged as a critical skill across disciplines. Yet effective, scalable approaches for teaching these concepts in higher education remain limited, particularly for students outside STEM fields. To address this gap, we developed AI User, an interactive online curriculum that introduces core AI concepts through scenario - based activities set in real - world contexts. This study presents findings from four focus groups with instructors who engaged with AI User materials and participated in structured feedback activities. Thematic analysis revealed that instructors valued exploratory tasks that simulated real - world AI use cases and fostered experimentation, while also identifying challenges related to scaffolding, accessibility, and multi-modal support. A ranking task for instructional support materials showed a strong preference for interactive demonstrations over traditional educational materials like conceptual guides or lecture slides. These findings offer insights into instructor perspectives on making AI concepts more accessible and relevant for broad learner audiences. They also inform the design of AI literacy tools that align with diverse teaching contexts and support critical engagement with AI in higher education.
As language models evolve into autonomous agents that act and communicate on behalf of users, ensuring safety in multi-agent ecosystems becomes a central challenge. Interactions between personal assistants and external service providers expose a core tension between utility and protection: effective collaboration requires information sharing, yet every exchange creates new attack surfaces. We introduce ConVerse, a dynamic benchmark for evaluating privacy and security risks in agent-agent interactions. ConVerse spans three practical domains (travel, real estate, insurance) with 12 user personas and over 864 contextually grounded attacks (611 privacy, 253 security). Unlike prior single-agent settings, it models autonomous, multi-turn agent-to-agent conversations where malicious requests are embedded within plausible discourse. Privacy is tested through a three-tier taxonomy assessing abstraction quality, while security attacks target tool use and preference manipulation. Evaluating seven state-of-the-art models reveals persistent vulnerabilities; privacy attacks succeed in up to 88% of cases and security breaches in up to 60%, with stronger models leaking more. By unifying privacy and security within interactive multi-agent contexts, ConVerse reframes safety as an emergent property of communication.
Benefiting from the rapid development of metamaterials and metasurfaces, the holographic multiple-input and multiple-output surface (HMIMOS) has been regarded as a promising solution for future wireless networks recently. By densely packing numerous radiation elements together, HMIMOS is capable of realizing accurate beamforming with low hardware complexity. However, enormous radiation elements on the HMIMOS lead to high computational complexity and signaling overhead when applying traditional beamforming schemes relying on instantaneous channel state information (CSI). To tackle this problem, we propose a two-timescale optimization scheme to minimize the required transmission power under the constraint of all users' quality-of-service (QoS). Specifically, the beampatterns at the base station (BS) and the user equippment (UE) are optimized over the slowly changing statistical CSI based on the constrained stochastic successive convex approximation (CSSCA) algorithm. Then, the instantaneous CSI is utilized to design the precoding matrix in order to ensure the system performance without significant increase in computational cost, due to the small number of feeds on the HMIMOS. Simulation results demonstrate the effectiveness of our proposed method compared to other baselines.
Predicting the effect of amino acid mutations on enzyme thermodynamic stability (DDG) is fundamental to protein engineering and drug design. While recent deep learning approaches have shown promise, they often process sequence and structure information independently, failing to capture the intricate coupling between local structural geometry and global sequential patterns. We present DGTN (Diffused Graph-Transformer Network), a novel architecture that co-learns graph neural network (GNN) weights for structural priors and transformer attention through a diffusion mechanism. Our key innovation is a bidirectional diffusion process where: (1) GNN-derived structural embeddings guide transformer attention via learnable diffusion kernels, and (2) transformer representations refine GNN message passing through attention-modulated graph updates. We provide rigorous mathematical analysis showing this co-learning scheme achieves provably better approximation bounds than independent processing. On ProTherm and SKEMPI benchmarks, DGTN achieves state-of-the-art performance (Pearson Rho = 0.87, RMSE = 1.21 kcal/mol), with 6.2% improvement over best baselines. Ablation studies confirm the diffusion mechanism contributes 4.8 points to correlation. Our theoretical analysis proves the diffused attention converges to optimal structure-sequence coupling, with convergence rate O(1/sqrt(T) ) where T is diffusion steps. This work establishes a principled framework for integrating heterogeneous protein representations through learnable diffusion.
Physics-informed deep learning has emerged as a promising framework for solving partial differential equations (PDEs). Nevertheless, training these models on complex problems remains challenging, often leading to limited accuracy and efficiency. In this work, we introduce a hybrid adaptive sampling and weighting method to enhance the performance of physics-informed neural networks (PINNs). The adaptive sampling component identifies training points in regions where the solution exhibits rapid variation, while the adaptive weighting component balances the convergence rate across training points. Numerical experiments show that applying only adaptive sampling or only adaptive weighting is insufficient to consistently achieve accurate predictions, particularly when training points are scarce. Since each method emphasizes different aspects of the solution, their effectiveness is problem dependent. By combining both strategies, the proposed framework consistently improves prediction accuracy and training efficiency, offering a more robust approach for solving PDEs with PINNs.