High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
Realistic visual simulations are omnipresent, yet their creation requires computing time, rendering, and expert animation knowledge. Open-vocabulary visual effects generation from text inputs emerges as a promising solution that can unlock immense creative potential. However, current pipelines lack both physical realism and effective language interfaces, requiring slow offline optimization. In contrast, PhysTalk takes a 3D Gaussian Splatting (3DGS) scene as input and translates arbitrary user prompts into real time, physics based, interactive 4D animations. A large language model (LLM) generates executable code that directly modifies 3DGS parameters through lightweight proxies and particle dynamics. Notably, PhysTalk is the first framework to couple 3DGS directly with a physics simulator without relying on time consuming mesh extraction. While remaining open vocabulary, this design enables interactive 3D Gaussian animation via collision aware, physics based manipulation of arbitrary, multi material objects. Finally, PhysTalk is train-free and computationally lightweight: this makes 4D animation broadly accessible and shifts these workflows from a "render and wait" paradigm toward an interactive dialogue with a modern, physics-informed pipeline.
Temporally extended actions improve the ability to explore and plan in single-agent settings. In multi-agent settings, the exponential growth of the joint state space with the number of agents makes coordinated behaviours even more valuable. Yet, this same exponential growth renders the design of multi-agent options particularly challenging. Existing multi-agent option discovery methods often sacrifice coordination by producing loosely coupled or fully independent behaviours. Toward addressing these limitations, we describe a novel approach for multi-agent option discovery. Specifically, we propose a joint-state abstraction that compresses the state space while preserving the information necessary to discover strongly coordinated behaviours. Our approach builds on the inductive bias that synchronisation over agent states provides a natural foundation for coordination in the absence of explicit objectives. We first approximate a fictitious state of maximal alignment with the team, the \textit{Fermat} state, and use it to define a measure of \textit{spreadness}, capturing team-level misalignment on each individual state dimension. Building on this representation, we then employ a neural graph Laplacian estimator to derive options that capture state synchronisation patterns between agents. We evaluate the resulting options across multiple scenarios in two multi-agent domains, showing that they yield stronger downstream coordination capabilities compared to alternative option discovery methods.
Reconfigurable intelligent surfaces (RISs) mounted on unmanned aerial vehicles (UAVs) can reshape wireless propagation on-demand. However, their performance is sensitive to UAV jitter and cascaded channel uncertainty. This paper investigates a downlink multiple-input single-output UAV-mounted RIS system in which a ground multiple-antenna base station (BS) serves multiple single-antenna users under practical impairments. Our goal is to maximize the expected throughput under stochastic three-dimensional UAV jitter and imperfect cascaded channel state information (CSI) based only on the available channel estimates. This leads to a stochastic nonconvex optimization problem subject to a BS transmit power constraint and strict unit-modulus constraints on all RIS elements. To address this problem, we design a model-free deep reinforcement learning (DRL) framework with a contextual bandit formulation. A differentiable feasibility layer is utilized to map continuous actions to feasible solutions, while the reward is a Monte Carlo estimate of the expected throughput. We instantiate this framework with constrained variants of deep deterministic policy gradient (DDPG) and twin delayed deep deterministic policy gradient (TD3) that do not use target networks. Simulations show that the proposed algorithms yield higher throughput than conventional alternating optimization-based weighted minimum mean-square error (AO-WMMSE) baselines under severe jitter and low CSI quality. Across different scenarios, the proposed methods achieve performance that is either comparable to or slightly below the AO-WMMSE benchmark, based on sample average approximation (SAA) with a relative gap ranging from 0-12%. Moreover, the proposed DRL controllers achieve online inference times of 0.6 ms per decision versus roughly 370-550 ms for AO-WMMSE solvers.
Despite the recent progresses, particularly in developing Language Models, there are fundamental challenges and unanswered questions about how such models can continually learn/memorize, self-improve, and find effective solutions. In this paper, we present a new learning paradigm, called Nested Learning (NL), that coherently represents a machine learning model with a set of nested, multi-level, and/or parallel optimization problems, each of which with its own context flow. Through the lenses of NL, existing deep learning methods learns from data through compressing their own context flow, and in-context learning naturally emerges in large models. NL suggests a philosophy to design more expressive learning algorithms with more levels, resulting in higher-order in-context learning and potentially unlocking effective continual learning capabilities. We advocate for NL by presenting three core contributions: (1) Expressive Optimizers: We show that known gradient-based optimizers, such as Adam, SGD with Momentum, etc., are in fact associative memory modules that aim to compress the gradients' information (by gradient descent). Building on this insight, we present other more expressive optimizers with deep memory and/or more powerful learning rules; (2) Self-Modifying Learning Module: Taking advantage of NL's insights on learning algorithms, we present a sequence model that learns how to modify itself by learning its own update algorithm; and (3) Continuum Memory System: We present a new formulation for memory system that generalizes the traditional viewpoint of long/short-term memory. Combining our self-modifying sequence model with the continuum memory system, we present a continual learning module, called Hope, showing promising results in language modeling, knowledge incorporation, and few-shot generalization tasks, continual learning, and long-context reasoning tasks.
Fault diagnosis of lithium-ion batteries is critical for system safety. While existing deep learning methods exhibit superior detection accuracy, their "black-box" nature hinders interpretability. Furthermore, restricted by binary classification paradigms, they struggle to provide root cause analysis and maintenance recommendations. To address these limitations, this paper proposes BatteryAgent, a hierarchical framework that integrates physical knowledge features with the reasoning capabilities of Large Language Models (LLMs). The framework comprises three core modules: (1) A Physical Perception Layer that utilizes 10 mechanism-based features derived from electrochemical principles, balancing dimensionality reduction with physical fidelity; (2) A Detection and Attribution Layer that employs Gradient Boosting Decision Trees and SHAP to quantify feature contributions; and (3) A Reasoning and Diagnosis Layer that leverages an LLM as the agent core. This layer constructs a "numerical-semantic" bridge, combining SHAP attributions with a mechanism knowledge base to generate comprehensive reports containing fault types, root cause analysis, and maintenance suggestions. Experimental results demonstrate that BatteryAgent effectively corrects misclassifications on hard boundary samples, achieving an AUROC of 0.986, which significantly outperforms current state-of-the-art methods. Moreover, the framework extends traditional binary detection to multi-type interpretable diagnosis, offering a new paradigm shift from "passive detection" to "intelligent diagnosis" for battery safety management.
Target search and tracking (SAT) is a fundamental problem for various robotic applications such as search and rescue and environmental exploration. This paper proposes an informative trajectory planning approach, namely ReSPIRe, for SAT in unknown cluttered environments under considerably inaccurate prior target information and limited sensing field of view. We first develop a novel sigma point-based approximation approach to fast and accurately estimate mutual information reward under non-Gaussian belief distributions, utilizing informative sampling in state and observation spaces to mitigate the computational intractability of integral calculation. To tackle significant uncertainty associated with inadequate prior target information, we propose the hierarchical particle structure in ReSPIRe, which not only extracts critical particles for global route guidance, but also adjusts the particle number adaptively for planning efficiency. Building upon the hierarchical structure, we develop the reusable belief tree search approach to build a policy tree for online trajectory planning under uncertainty, which reuses rollout evaluation to improve planning efficiency. Extensive simulations and real-world experiments demonstrate that ReSPIRe outperforms representative benchmark methods with smaller MI approximation error, higher search efficiency, and more stable tracking performance, while maintaining outstanding computational efficiency.
Tensor network structure search (TN-SS) aims to automatically discover optimal network topologies and rank configurations for efficient tensor decomposition in high-dimensional data representation. Despite recent advances, existing TN-SS methods face significant limitations in computational tractability, structure adaptivity, and optimization robustness across diverse tensor characteristics. They struggle with three key challenges: single-scale optimization missing multi-scale structures, discrete search spaces hindering smooth structure evolution, and separated structure-parameter optimization causing computational inefficiency. We propose RGTN (Renormalization Group guided Tensor Network search), a physics-inspired framework transforming TN-SS via multi-scale renormalization group flows. Unlike fixed-scale discrete search methods, RGTN uses dynamic scale-transformation for continuous structure evolution across resolutions. Its core innovation includes learnable edge gates for optimization-stage topology modification and intelligent proposals based on physical quantities like node tension measuring local stress and edge information flow quantifying connectivity importance. Starting from low-complexity coarse scales and refining to finer ones, RGTN finds compact structures while escaping local minima via scale-induced perturbations. Extensive experiments on light field data, high-order synthetic tensors, and video completion tasks show RGTN achieves state-of-the-art compression ratios and runs 4-600$\times$ faster than existing methods, validating the effectiveness of our physics-inspired approach.
Establishing the correct correspondence of feature points is a fundamental task in computer vision. However, the presence of numerous outliers among the feature points can significantly affect the matching results, reducing the accuracy and robustness of the process. Furthermore, a challenge arises when dealing with a large proportion of outliers: how to ensure the extraction of high-quality information while reducing errors caused by negative samples. To address these issues, in this paper, we propose a novel method called Layer-by-Layer Hierarchical Attention Network, which enhances the precision of feature point matching in computer vision by addressing the issue of outliers. Our method incorporates stage fusion, hierarchical extraction, and an attention mechanism to improve the network's representation capability by emphasizing the rich semantic information of feature points. Specifically, we introduce a layer-by-layer channel fusion module, which preserves the feature semantic information from each stage and achieves overall fusion, thereby enhancing the representation capability of the feature points. Additionally, we design a hierarchical attention module that adaptively captures and fuses global perception and structural semantic information using an attention mechanism. Finally, we propose two architectures to extract and integrate features, thereby improving the adaptability of our network. We conduct experiments on two public datasets, namely YFCC100M and SUN3D, and the results demonstrate that our proposed method outperforms several state-of-the-art techniques in both outlier removal and camera pose estimation. Source code is available at http://www.linshuyuan.com.
This paper addresses a fundamental physical layer conflict in hybrid Wireless Sensor Networks (WSNs) between high-throughput primary communication and the stringent power envelope requirements of passive backscatter sensors. We propose a Backscatter-Constrained Transmit Antenna Selection (BC-TAS) framework, a per-subcarrier selection strategy for multi-antenna illuminators operating within a Multi-Dimensional Orthogonal Frequency Division Multiplexing (MD-OFDM) architecture. Unlike conventional signal-to-noise ratio (SNR) centric selection schemes, BC-TAS employs a multi-objective cost function that jointly maximizes desired link reliability, stabilizes the incident RF energy envelope at passive Surface Acoustic Wave (SAW) sensors, and suppresses interference toward coexisting victim receivers. By exploiting the inherent sparsity of MD-OFDM, the proposed framework enables dual-envelope regulation, simultaneously reducing the transmitter Peak-to-Average Power Ratio (PAPR) and the Backscatter Crest Factor (BCF) observed at the tag. To enhance robustness under imperfect Channel State Information (CSI), a Kalman-based channel smoothing mechanism is incorporated to maintain selection stability in low-SNR regimes. Numerical results using IEEE 802.11be dispersive channel models and a nonlinear Rapp power amplifier demonstrate that BC-TAS achieves orders-of-magnitude improvement in outage probability and significant gains in energy efficiency compared to conventional MU-MIMO baselines, while ensuring spectral mask compliance under reduced power amplifier back-off. These results establish BC-TAS as an effective illuminator-side control mechanism for enabling reliable and energy-stable sensing and communication coexistence in dense, power-constrained wireless environments.