Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Image To Image Translation": models, code, and papers

Semi Few-Shot Attribute Translation

Oct 16, 2019
Ricard Durall, Franz-Josef Pfreundt, Janis Keuper

Recent studies have shown remarkable success in image-to-image translation for attribute transfer applications. However, most of existing approaches are based on deep learning and require an abundant amount of labeled data to produce good results, therefore limiting their applicability. In the same vein, recent advances in meta-learning have led to successful implementations with limited available data, allowing so-called few-shot learning. In this paper, we address this limitation of supervised methods, by proposing a novel approach based on GANs. These are trained in a meta-training manner, which allows them to perform image-to-image translations using just a few labeled samples from a new target class. This work empirically demonstrates the potential of training a GAN for few shot image-to-image translation on hair color attribute synthesis tasks, opening the door to further research on generative transfer learning.

* arXiv admin note: text overlap with arXiv:1904.04232, arXiv:1901.02199 by other authors 

Hausa Visual Genome: A Dataset for Multi-Modal English to Hausa Machine Translation

May 06, 2022
Idris Abdulmumin, Satya Ranjan Dash, Musa Abdullahi Dawud, Shantipriya Parida, Shamsuddeen Hassan Muhammad, Ibrahim Sa'id Ahmad, Subhadarshi Panda, Ondřej Bojar, Bashir Shehu Galadanci, Bello Shehu Bello

Multi-modal Machine Translation (MMT) enables the use of visual information to enhance the quality of translations. The visual information can serve as a valuable piece of context information to decrease the ambiguity of input sentences. Despite the increasing popularity of such a technique, good and sizeable datasets are scarce, limiting the full extent of their potential. Hausa, a Chadic language, is a member of the Afro-Asiatic language family. It is estimated that about 100 to 150 million people speak the language, with more than 80 million indigenous speakers. This is more than any of the other Chadic languages. Despite a large number of speakers, the Hausa language is considered low-resource in natural language processing (NLP). This is due to the absence of sufficient resources to implement most NLP tasks. While some datasets exist, they are either scarce, machine-generated, or in the religious domain. Therefore, there is a need to create training and evaluation data for implementing machine learning tasks and bridging the research gap in the language. This work presents the Hausa Visual Genome (HaVG), a dataset that contains the description of an image or a section within the image in Hausa and its equivalent in English. To prepare the dataset, we started by translating the English description of the images in the Hindi Visual Genome (HVG) into Hausa automatically. Afterward, the synthetic Hausa data was carefully post-edited considering the respective images. The dataset comprises 32,923 images and their descriptions that are divided into training, development, test, and challenge test set. The Hausa Visual Genome is the first dataset of its kind and can be used for Hausa-English machine translation, multi-modal research, and image description, among various other natural language processing and generation tasks.

* Accepted at Language Resources and Evaluation Conference 2022 (LREC2022) 

Gesture-to-Gesture Translation in the Wild via Category-Independent Conditional Maps

Jul 31, 2019
Yahui Liu, Marco De Nadai, Gloria Zen, Nicu Sebe, Bruno Lepri

Recent works have shown Generative Adversarial Networks (GANs) to be particularly effective in image-to-image translations. However, in tasks such as body pose and hand gesture translation, existing methods usually require precise annotations, e.g. key-points or skeletons, which are time-consuming to draw. In this work, we propose a novel GAN architecture that decouples the required annotations into a category label - that specifies the gesture type - and a simple-to-draw category-independent conditional map - that expresses the location, rotation and size of the hand gesture. Our architecture synthesizes the target gesture while preserving the background context, thus effectively dealing with gesture translation in the wild. To this aim, we use an attention module and a rolling guidance approach, which loops the generated images back into the network and produces higher quality images compared to competing works. Thus, our GAN learns to generate new images from simple annotations without requiring key-points or skeleton labels. Results on two public datasets show that our method outperforms state of the art approaches both quantitatively and qualitatively. To the best of our knowledge, no work so far has addressed the gesture-to-gesture translation in the wild by requiring user-friendly annotations.

* 15 pages, 12 figures 

Unpaired Image Translation via Adaptive Convolution-based Normalization

Nov 29, 2019
Wonwoong Cho, Kangyeol Kim, Eungyeup Kim, Hyunwoo J. Kim, Jaegul Choo

Disentangling content and style information of an image has played an important role in recent success in image translation. In this setting, how to inject given style into an input image containing its own content is an important issue, but existing methods followed relatively simple approaches, leaving room for improvement especially when incorporating significant style changes. In response, we propose an advanced normalization technique based on adaptive convolution (AdaCoN), in order to properly impose style information into the content of an input image. In detail, after locally standardizing the content representation in a channel-wise manner, AdaCoN performs adaptive convolution where the convolution filter weights are dynamically estimated using the encoded style representation. The flexibility of AdaCoN can handle complicated image translation tasks involving significant style changes. Our qualitative and quantitative experiments demonstrate the superiority of our proposed method against various existing approaches that inject the style into the content.


Comparison and Analysis of Image-to-Image Generative Adversarial Networks: A Survey

Dec 23, 2021
Sagar Saxena, Mohammad Nayeem Teli

Generative Adversarial Networks (GANs) have recently introduced effective methods of performing Image-to-Image translations. These models can be applied and generalized to a variety of domains in Image-to-Image translation without changing any parameters. In this paper, we survey and analyze eight Image-to-Image Generative Adversarial Networks: Pix2Px, CycleGAN, CoGAN, StarGAN, MUNIT, StarGAN2, DA-GAN, and Self Attention GAN. Each of these models presented state-of-the-art results and introduced new techniques to build Image-to-Image GANs. In addition to a survey of the models, we also survey the 18 datasets they were trained on and the 9 metrics they were evaluated on. Finally, we present results of a controlled experiment for 6 of these models on a common set of metrics and datasets. The results were mixed and showed that on certain datasets, tasks, and metrics some models outperformed others. The last section of this paper discusses those results and establishes areas of future research. As researchers continue to innovate new Image-to-Image GANs, it is important that they gain a good understanding of the existing methods, datasets, and metrics. This paper provides a comprehensive overview and discussion to help build this foundation.

* 22 pages, 22 figures, Preprint, Under review at IJCV 

XNet: GAN Latent Space Constraints

Jan 14, 2019
Omry Sendik, Dani Lischinski, Daniel CohenOr

Recent GAN-based architectures have been able to deliver impressive performance on the general task of image-to-image translation. In particular, it was shown that a wide variety of image translation operators may be learned from two image sets, containing images from two different domains, without establishing an explicit pairing between the images. This was made possible by introducing clever regularizers to overcome the under-constrained nature of the unpaired translation problem. In this work, we introduce a novel architecture for unpaired image translation, and explore several new regularizers enabled by it. Specifically, our architecture comprises a pair of GANs, as well as a pair of translators between their respective latent spaces. These cross-translators enable us to impose several regularizing constraints on the learnt image translation operator, collectively referred to as latent cross-consistency. Our results show that our proposed architecture and latent cross-consistency constraints are able to outperform the existing state-of-the-art on a wide variety of image translation tasks.


Exploiting Image Translations via Ensemble Self-Supervised Learning for Unsupervised Domain Adaptation

Jul 13, 2021
Fabrizio J. Piva, Gijs Dubbelman

We introduce an unsupervised domain adaption (UDA) strategy that combines multiple image translations, ensemble learning and self-supervised learning in one coherent approach. We focus on one of the standard tasks of UDA in which a semantic segmentation model is trained on labeled synthetic data together with unlabeled real-world data, aiming to perform well on the latter. To exploit the advantage of using multiple image translations, we propose an ensemble learning approach, where three classifiers calculate their prediction by taking as input features of different image translations, making each classifier learn independently, with the purpose of combining their outputs by sparse Multinomial Logistic Regression. This regression layer known as meta-learner helps to reduce the bias during pseudo label generation when performing self-supervised learning and improves the generalizability of the model by taking into consideration the contribution of each classifier. We evaluate our method on the standard UDA benchmarks, i.e. adapting GTA V and Synthia to Cityscapes, and achieve state-of-the-art results in the mean intersection over union metric. Extensive ablation experiments are reported to highlight the advantageous properties of our proposed UDA strategy.

* Manuscript under review at Computer Vision and Image Understanding (CVIU) journal 

Findings of the Second Shared Task on Multimodal Machine Translation and Multilingual Image Description

Oct 19, 2017
Desmond Elliott, Stella Frank, Loïc Barrault, Fethi Bougares, Lucia Specia

We present the results from the second shared task on multimodal machine translation and multilingual image description. Nine teams submitted 19 systems to two tasks. The multimodal translation task, in which the source sentence is supplemented by an image, was extended with a new language (French) and two new test sets. The multilingual image description task was changed such that at test time, only the image is given. Compared to last year, multimodal systems improved, but text-only systems remain competitive.

* Proceedings of the Second Conference on Machine Translation, 2017, pp. 215--233