Abstract:Video Language Models (VLMs) are crucial for generalizing across diverse tasks and using language cues to enhance learning. While transformer-based architectures have been the de facto in vision-language training, they face challenges like quadratic computational complexity, high GPU memory usage, and difficulty with long-term dependencies. To address these limitations, we introduce MambaVL, a novel model that leverages recent advancements in selective state space modality fusion to efficiently capture long-range dependencies and learn joint representations for vision and language data. MambaVL utilizes a shared state transition matrix across both modalities, allowing the model to capture information about actions from multiple perspectives within the scene. Furthermore, we propose a question-answering task that helps guide the model toward relevant cues. These questions provide critical information about actions, objects, and environmental context, leading to enhanced performance. As a result, MambaVL achieves state-of-the-art performance in action recognition on the Epic-Kitchens-100 dataset and outperforms baseline methods in action anticipation.
Abstract:Cross-modal contrastive pre-training between natural language and other modalities, e.g., vision and audio, has demonstrated astonishing performance and effectiveness across a diverse variety of tasks and domains. In this paper, we investigate whether such natural language supervision can be used for wearable sensor based Human Activity Recognition (HAR), and discover that-surprisingly-it performs substantially worse than standard end-to-end training and self-supervision. We identify the primary causes for this as: sensor heterogeneity and the lack of rich, diverse text descriptions of activities. To mitigate their impact, we also develop strategies and assess their effectiveness through an extensive experimental evaluation. These strategies lead to significant increases in activity recognition, bringing performance closer to supervised and self-supervised training, while also enabling the recognition of unseen activities and cross modal retrieval of videos. Overall, our work paves the way for better sensor-language learning, ultimately leading to the development of foundational models for HAR using wearables.
Abstract:The goal of image cropping is to identify visually appealing crops within an image. Conventional methods rely on specialized architectures trained on specific datasets, which struggle to be adapted to new requirements. Recent breakthroughs in large vision-language models (VLMs) have enabled visual in-context learning without explicit training. However, effective strategies for vision downstream tasks with VLMs remain largely unclear and underexplored. In this paper, we propose an effective approach to leverage VLMs for better image cropping. First, we propose an efficient prompt retrieval mechanism for image cropping to automate the selection of in-context examples. Second, we introduce an iterative refinement strategy to iteratively enhance the predicted crops. The proposed framework, named Cropper, is applicable to a wide range of cropping tasks, including free-form cropping, subject-aware cropping, and aspect ratio-aware cropping. Extensive experiments and a user study demonstrate that Cropper significantly outperforms state-of-the-art methods across several benchmarks.
Abstract:We extend multimodal transformers to include 3D camera motion as a conditioning signal for the task of video generation. Generative video models are becoming increasingly powerful, thus focusing research efforts on methods of controlling the output of such models. We propose to add virtual 3D camera controls to generative video methods by conditioning generated video on an encoding of three-dimensional camera movement over the course of the generated video. Results demonstrate that we are (1) able to successfully control the camera during video generation, starting from a single frame and a camera signal, and (2) we demonstrate the accuracy of the generated 3D camera paths using traditional computer vision methods.
Abstract:We present SLAIM - Simultaneous Localization and Implicit Mapping. We propose a novel coarse-to-fine tracking model tailored for Neural Radiance Field SLAM (NeRF-SLAM) to achieve state-of-the-art tracking performance. Notably, existing NeRF-SLAM systems consistently exhibit inferior tracking performance compared to traditional SLAM algorithms. NeRF-SLAM methods solve camera tracking via image alignment and photometric bundle-adjustment. Such optimization processes are difficult to optimize due to the narrow basin of attraction of the optimization loss in image space (local minima) and the lack of initial correspondences. We mitigate these limitations by implementing a Gaussian pyramid filter on top of NeRF, facilitating a coarse-to-fine tracking optimization strategy. Furthermore, NeRF systems encounter challenges in converging to the right geometry with limited input views. While prior approaches use a Signed-Distance Function (SDF)-based NeRF and directly supervise SDF values by approximating ground truth SDF through depth measurements, this often results in suboptimal geometry. In contrast, our method employs a volume density representation and introduces a novel KL regularizer on the ray termination distribution, constraining scene geometry to consist of empty space and opaque surfaces. Our solution implements both local and global bundle-adjustment to produce a robust (coarse-to-fine) and accurate (KL regularizer) SLAM solution. We conduct experiments on multiple datasets (ScanNet, TUM, Replica) showing state-of-the-art results in tracking and in reconstruction accuracy.
Abstract:We study the task of 3D multi-object re-identification from embodied tours. Specifically, an agent is given two tours of an environment (e.g. an apartment) under two different layouts (e.g. arrangements of furniture). Its task is to detect and re-identify objects in 3D - e.g. a "sofa" moved from location A to B, a new "chair" in the second layout at location C, or a "lamp" from location D in the first layout missing in the second. To support this task, we create an automated infrastructure to generate paired egocentric tours of initial/modified layouts in the Habitat simulator using Matterport3D scenes, YCB and Google-scanned objects. We present 3D Semantic MapNet (3D-SMNet) - a two-stage re-identification model consisting of (1) a 3D object detector that operates on RGB-D videos with known pose, and (2) a differentiable object matching module that solves correspondence estimation between two sets of 3D bounding boxes. Overall, 3D-SMNet builds object-based maps of each layout and then uses a differentiable matcher to re-identify objects across the tours. After training 3D-SMNet on our generated episodes, we demonstrate zero-shot transfer to real-world rearrangement scenarios by instantiating our task in Replica, Active Vision, and RIO environments depicting rearrangements. On all datasets, we find 3D-SMNet outperforms competitive baselines. Further, we show jointly training on real and generated episodes can lead to significant improvements over training on real data alone.
Abstract:Although the task of anticipating future actions is highly uncertain, information from additional modalities help to narrow down plausible action choices. Each modality provides different environmental context for the model to learn from. While previous multi-modal methods leverage information from modalities such as video and audio, we primarily explore how text inputs for actions and objects can also enable more accurate action anticipation. Therefore, we propose a Multi-modal Anticipative Transformer (MAT), an attention-based video transformer architecture that jointly learns from multi-modal features and text captions. We train our model in two-stages, where the model first learns to predict actions in the video clip by aligning with captions, and during the second stage, we fine-tune the model to predict future actions. Compared to existing methods, MAT has the advantage of learning additional environmental context from two kinds of text inputs: action descriptions during the pre-training stage, and the text inputs for detected objects and actions during modality feature fusion. Through extensive experiments, we evaluate the effectiveness of the pre-training stage, and show that our model outperforms previous methods on all datasets. In addition, we examine the impact of object and action information obtained via text and perform extensive ablations. We evaluate the performance on on three datasets: EpicKitchens-100, EpicKitchens-55 and EGTEA GAZE+; and show that text descriptions do indeed aid in more effective action anticipation.
Abstract:Recent works demonstrate that using reinforcement learning (RL) with quality rewards can enhance the quality of generated images in text-to-image (T2I) generation. However, a simple aggregation of multiple rewards may cause over-optimization in certain metrics and degradation in others, and it is challenging to manually find the optimal weights. An effective strategy to jointly optimize multiple rewards in RL for T2I generation is highly desirable. This paper introduces Parrot, a novel multi-reward RL framework for T2I generation. Through the use of the batch-wise Pareto optimal selection, Parrot automatically identifies the optimal trade-off among different rewards during the RL optimization of the T2I generation. Additionally, Parrot employs a joint optimization approach for the T2I model and the prompt expansion network, facilitating the generation of quality-aware text prompts, thus further enhancing the final image quality. To counteract the potential catastrophic forgetting of the original user prompt due to prompt expansion, we introduce original prompt centered guidance at inference time, ensuring that the generated image remains faithful to the user input. Extensive experiments and a user study demonstrate that Parrot outperforms several baseline methods across various quality criteria, including aesthetics, human preference, image sentiment, and text-image alignment.
Abstract:We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
Abstract:We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of $512 \times 896$ resolution at $8$ frames per second.