Topic:Image To Image Translation
What is Image To Image Translation? Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Papers and Code
Apr 16, 2025
Abstract:Despite continuous advancements in cancer treatment, brain metastatic disease remains a significant complication of primary cancer and is associated with an unfavorable prognosis. One approach for improving diagnosis, management, and outcomes is to implement algorithms based on artificial intelligence for the automated segmentation of both pre- and post-treatment MRI brain images. Such algorithms rely on volumetric criteria for lesion identification and treatment response assessment, which are still not available in clinical practice. Therefore, it is critical to establish tools for rapid volumetric segmentations methods that can be translated to clinical practice and that are trained on high quality annotated data. The BraTS-METS 2025 Lighthouse Challenge aims to address this critical need by establishing inter-rater and intra-rater variability in dataset annotation by generating high quality annotated datasets from four individual instances of segmentation by neuroradiologists while being recorded on video (two instances doing "from scratch" and two instances after AI pre-segmentation). This high-quality annotated dataset will be used for testing phase in 2025 Lighthouse challenge and will be publicly released at the completion of the challenge. The 2025 Lighthouse challenge will also release the 2023 and 2024 segmented datasets that were annotated using an established pipeline of pre-segmentation, student annotation, two neuroradiologists checking, and one neuroradiologist finalizing the process. It builds upon its previous edition by including post-treatment cases in the dataset. Using these high-quality annotated datasets, the 2025 Lighthouse challenge plans to test benchmark algorithms for automated segmentation of pre-and post-treatment brain metastases (BM), trained on diverse and multi-institutional datasets of MRI images obtained from patients with brain metastases.
* 28 pages, 4 figures, 2 tables
Via

Apr 06, 2025
Abstract:Humans develop certain cognitive abilities to recognize objects and their transformations without explicit supervision, highlighting the importance of unsupervised representation learning. A fundamental challenge in unsupervised representation learning is to separate different transformations in learned feature representations. Although algebraic approaches have been explored, a comprehensive theoretical framework remains underdeveloped. Existing methods decompose transformations based on algebraic independence, but these methods primarily focus on commutative transformations and do not extend to cases where transformations are conditionally independent but noncommutative. To extend current representation learning frameworks, we draw inspiration from Galois theory, where the decomposition of groups through normal subgroups provides an approach for the analysis of structured transformations. Normal subgroups naturally extend commutativity under certain conditions and offer a foundation for the categorization of transformations, even when they do not commute. In this paper, we propose a novel approach that leverages normal subgroups to enable the separation of conditionally independent transformations, even in the absence of commutativity. Through experiments on geometric transformations in images, we show that our method successfully categorizes conditionally independent transformations, such as rotation and translation, in an unsupervised manner, suggesting a close link between group decomposition via normal subgroups and transformation categorization in representation learning.
* 8 pages, 10 figures, conference paper
Via

Mar 18, 2025
Abstract:While diffusion-based models excel at generating photorealistic images from text, a more nuanced challenge emerges when constrained to using only a fixed set of rigid shapes, akin to solving tangram puzzles or arranging real-world objects to match semantic descriptions. We formalize this problem as shape-based image generation, a new text-guided image-to-image translation task that requires rearranging the input set of rigid shapes into non-overlapping configurations and visually communicating the target concept. Unlike pixel-manipulation approaches, our method, ShapeShift, explicitly parameterizes each shape within a differentiable vector graphics pipeline, iteratively optimizing placement and orientation through score distillation sampling from pretrained diffusion models. To preserve arrangement clarity, we introduce a content-aware collision resolution mechanism that applies minimal semantically coherent adjustments when overlaps occur, ensuring smooth convergence toward physically valid configurations. By bridging diffusion-based semantic guidance with explicit geometric constraints, our approach yields interpretable compositions where spatial relationships clearly embody the textual prompt. Extensive experiments demonstrate compelling results across diverse scenarios, with quantitative and qualitative advantages over alternative techniques.
Via

Mar 19, 2025
Abstract:Ultrasound video classification enables automated diagnosis and has emerged as an important research area. However, publicly available ultrasound video datasets remain scarce, hindering progress in developing effective video classification models. We propose addressing this shortage by synthesizing plausible ultrasound videos from readily available, abundant ultrasound images. To this end, we introduce a latent dynamic diffusion model (LDDM) to efficiently translate static images to dynamic sequences with realistic video characteristics. We demonstrate strong quantitative results and visually appealing synthesized videos on the BUSV benchmark. Notably, training video classification models on combinations of real and LDDM-synthesized videos substantially improves performance over using real data alone, indicating our method successfully emulates dynamics critical for discrimination. Our image-to-video approach provides an effective data augmentation solution to advance ultrasound video analysis. Code is available at https://github.com/MedAITech/U_I2V.
* MICCAI 2024
Via

Mar 19, 2025
Abstract:Implicit neural representations (INRs) encode signals in neural network weights as a memory-efficient representation, decoupling sampling resolution from the associated resource costs. Current INR image classification methods are demonstrated on low-resolution data and are sensitive to image-space transformations. We attribute these issues to the global, fully-connected MLP neural network architecture encoding of current INRs, which lack mechanisms for local representation: MLPs are sensitive to absolute image location and struggle with high-frequency details. We propose ARC: Anchored Representation Clouds, a novel INR architecture that explicitly anchors latent vectors locally in image-space. By introducing spatial structure to the latent vectors, ARC captures local image data which in our testing leads to state-of-the-art implicit image classification of both low- and high-resolution images and increased robustness against image-space translation. Code can be found at https://github.com/JLuij/anchored_representation_clouds.
* Accepted at the ICLR 2025 Workshop on Neural Network Weights as a New
Data Modality
Via

Apr 08, 2025
Abstract:Existing text-to-3D and image-to-3D models often struggle with complex scenes involving multiple objects and intricate interactions. Although some recent attempts have explored such compositional scenarios, they still require an extensive process of optimizing the entire layout, which is highly cumbersome if not infeasible at all. To overcome these challenges, we propose Flash Sculptor in this paper, a simple yet effective framework for compositional 3D scene/object reconstruction from a single image. At the heart of Flash Sculptor lies a divide-and-conquer strategy, which decouples compositional scene reconstruction into a sequence of sub-tasks, including handling the appearance, rotation, scale, and translation of each individual instance. Specifically, for rotation, we introduce a coarse-to-fine scheme that brings the best of both worlds--efficiency and accuracy--while for translation, we develop an outlier-removal-based algorithm that ensures robust and precise parameters in a single step, without any iterative optimization. Extensive experiments demonstrate that Flash Sculptor achieves at least a 3 times speedup over existing compositional 3D methods, while setting new benchmarks in compositional 3D reconstruction performance. Codes are available at https://github.com/YujiaHu1109/Flash-Sculptor.
Via

Apr 01, 2025
Abstract:Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.
Via

Mar 28, 2025
Abstract:Time-resolved CBCT imaging, which reconstructs a dynamic sequence of CBCTs reflecting intra-scan motion (one CBCT per x-ray projection without phase sorting or binning), is highly desired for regular and irregular motion characterization, patient setup, and motion-adapted radiotherapy. Representing patient anatomy and associated motion fields as 3D Gaussians, we developed a Gaussian representation-based framework (PMF-STGR) for fast and accurate dynamic CBCT reconstruction. PMF-STGR comprises three major components: a dense set of 3D Gaussians to reconstruct a reference-frame CBCT for the dynamic sequence; another 3D Gaussian set to capture three-level, coarse-to-fine motion-basis-components (MBCs) to model the intra-scan motion; and a CNN-based motion encoder to solve projection-specific temporal coefficients for the MBCs. Scaled by the temporal coefficients, the learned MBCs will combine into deformation vector fields to deform the reference CBCT into projection-specific, time-resolved CBCTs to capture the dynamic motion. Due to the strong representation power of 3D Gaussians, PMF-STGR can reconstruct dynamic CBCTs in a 'one-shot' training fashion from a standard 3D CBCT scan, without using any prior anatomical or motion model. We evaluated PMF-STGR using XCAT phantom simulations and real patient scans. Metrics including the image relative error, structural-similarity-index-measure, tumor center-of-mass-error, and landmark localization error were used to evaluate the accuracy of solved dynamic CBCTs and motion. PMF-STGR shows clear advantages over a state-of-the-art, INR-based approach, PMF-STINR. Compared with PMF-STINR, PMF-STGR reduces reconstruction time by 50% while reconstructing less blurred images with better motion accuracy. With improved efficiency and accuracy, PMF-STGR enhances the applicability of dynamic CBCT imaging for potential clinical translation.
* 25 pages, 5 figures
Via

Mar 31, 2025
Abstract:Despite advances in embodied AI, agent reasoning systems still struggle to capture the fundamental conceptual structures that humans naturally use to understand and interact with their environment. To address this, we propose a novel framework that bridges embodied cognition theory and agent systems by leveraging a formal characterization of image schemas, which are defined as recurring patterns of sensorimotor experience that structure human cognition. By customizing LLMs to translate natural language descriptions into formal representations based on these sensorimotor patterns, we will be able to create a neurosymbolic system that grounds the agent's understanding in fundamental conceptual structures. We argue that such an approach enhances both efficiency and interpretability while enabling more intuitive human-agent interactions through shared embodied understanding.
Via

Mar 15, 2025
Abstract:Projector-camera systems (ProCams) simulation aims to model the physical project-and-capture process and associated scene parameters of a ProCams, and is crucial for spatial augmented reality (SAR) applications such as ProCams relighting and projector compensation. Recent advances use an end-to-end neural network to learn the project-and-capture process. However, these neural network-based methods often implicitly encapsulate scene parameters, such as surface material, gamma, and white balance in the network parameters, and are less interpretable and hard for novel scene simulation. Moreover, neural networks usually learn the indirect illumination implicitly in an image-to-image translation way which leads to poor performance in simulating complex projection effects such as soft-shadow and interreflection. In this paper, we introduce a novel path tracing-based differentiable projector-camera systems (DPCS), offering a differentiable ProCams simulation method that explicitly integrates multi-bounce path tracing. Our DPCS models the physical project-and-capture process using differentiable physically-based rendering (PBR), enabling the scene parameters to be explicitly decoupled and learned using much fewer samples. Moreover, our physically-based method not only enables high-quality downstream ProCams tasks, such as ProCams relighting and projector compensation, but also allows novel scene simulation using the learned scene parameters. In experiments, DPCS demonstrates clear advantages over previous approaches in ProCams simulation, offering better interpretability, more efficient handling of complex interreflection and shadow, and requiring fewer training samples.
* 16 pages,16 figures
Via
