Abstract:Despite significant progress in natural language understanding, Large Language Models (LLMs) remain error-prone when performing logical reasoning, often lacking the robust mental representations that enable human-like comprehension. We introduce a prototype neurosymbolic system, Embodied-LM, that grounds understanding and logical reasoning in schematic representations based on image schemas-recurring patterns derived from sensorimotor experience that structure human cognition. Our system operationalizes the spatial foundations of these cognitive structures using declarative spatial reasoning within Answer Set Programming. Through evaluation on logical deduction problems, we demonstrate that LLMs can be guided to interpret scenarios through embodied cognitive structures, that these structures can be formalized as executable programs, and that the resulting representations support effective logical reasoning with enhanced interpretability. While our current implementation focuses on spatial primitives, it establishes the computational foundation for incorporating more complex and dynamic representations.
Abstract:Despite advances in embodied AI, agent reasoning systems still struggle to capture the fundamental conceptual structures that humans naturally use to understand and interact with their environment. To address this, we propose a novel framework that bridges embodied cognition theory and agent systems by leveraging a formal characterization of image schemas, which are defined as recurring patterns of sensorimotor experience that structure human cognition. By customizing LLMs to translate natural language descriptions into formal representations based on these sensorimotor patterns, we will be able to create a neurosymbolic system that grounds the agent's understanding in fundamental conceptual structures. We argue that such an approach enhances both efficiency and interpretability while enabling more intuitive human-agent interactions through shared embodied understanding.