Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Underwater acoustic target recognition (UATR) plays a vital role in marine applications but remains challenging due to limited labeled data and the complexity of ocean environments. This paper explores a central question: can speech large models (SLMs), trained on massive human speech corpora, be effectively transferred to underwater acoustics? To investigate this, we propose UATR-SLM, a simple framework that reuses the speech feature pipeline, adapts the SLM as an acoustic encoder, and adds a lightweight classifier.Experiments on the DeepShip and ShipsEar benchmarks show that UATR-SLM achieves over 99% in-domain accuracy, maintains strong robustness across variable signal lengths, and reaches up to 96.67% accuracy in cross-domain evaluation. These results highlight the strong transferability of SLMs to UATR, establishing a promising paradigm for leveraging speech foundation models in underwater acoustics.
Voice activity detection (VAD) plays a vital role in enabling applications such as speech recognition. We analyze the impact of window size on the accuracy of three VAD algorithms: Silero, WebRTC, and Root Mean Square (RMS) across a set of diverse real-world digital audio streams. We additionally explore the use of hysteresis on top of each VAD output. Our results offer practical references for optimizing VAD systems. Silero significantly outperforms WebRTC and RMS, and hysteresis provides a benefit for WebRTC.
Accurate transcription and speaker diarization of child-adult spoken interactions are crucial for developmental and clinical research. However, manual annotation is time-consuming and challenging to scale. Existing automated systems typically rely on cascaded speaker diarization and speech recognition pipelines, which can lead to error propagation. This paper presents a unified end-to-end framework that extends the Whisper encoder-decoder architecture to jointly model ASR and child-adult speaker role diarization. The proposed approach integrates: (i) a serialized output training scheme that emits speaker tags and start/end timestamps, (ii) a lightweight frame-level diarization head that enhances speaker-discriminative encoder representations, (iii) diarization-guided silence suppression for improved temporal precision, and (iv) a state-machine-based forced decoding procedure that guarantees structurally valid outputs. Comprehensive evaluations on two datasets demonstrate consistent and substantial improvements over two cascaded baselines, achieving lower multi-talker word error rates and demonstrating competitive diarization accuracy across both Whisper-small and Whisper-large models. These findings highlight the effectiveness and practical utility of the proposed joint modeling framework for generating reliable, speaker-attributed transcripts of child-adult interactions at scale. The code and model weights are publicly available
Evasion attacks pose significant threats to AI systems, exploiting vulnerabilities in machine learning models to bypass detection mechanisms. The widespread use of voice data, including deepfakes, in promising future industries is currently hindered by insufficient legal frameworks. Adversarial attack methods have emerged as the most effective countermeasure against the indiscriminate use of such data. This research introduces masked energy perturbation (MEP), a novel approach using power spectrum for energy masking of original voice data. MEP applies masking to small energy regions in the frequency domain before generating adversarial perturbations, targeting areas less noticeable to the human auditory model. The study primarily employs advanced speaker recognition models, including ECAPA-TDNN and ResNet34, which have shown remarkable performance in speaker verification tasks. The proposed MEP method demonstrated strong performance in both audio quality and evasion effectiveness. The energy masking approach effectively minimizes the perceptual evaluation of speech quality (PESQ) degradation, indicating that minimal perceptual distortion occurs to the human listener despite the adversarial perturbations. Specifically, in the PESQ evaluation, the relative performance of the MEP method was 26.68% when compared to the fast gradient sign method (FGSM) and iterative FGSM.
Discrete speech tokens offer significant advantages for storage and language model integration, but their application in speech emotion recognition (SER) is limited by paralinguistic information loss during quantization. This paper presents a comprehensive investigation of discrete tokens for SER. Using a fine-tuned WavLM-Large model, we systematically quantify performance degradation across different layer configurations and k-means quantization granularities. To recover the information loss, we propose two key strategies: (1) attention-based multi-layer fusion to recapture complementary information from different layers, and (2) integration of openSMILE features to explicitly reintroduce paralinguistic cues. We also compare mainstream neural codec tokenizers (SpeechTokenizer, DAC, EnCodec) and analyze their behaviors when fused with acoustic features. Our findings demonstrate that through multi-layer fusion and acoustic feature integration, discrete tokens can close the performance gap with continuous representations in SER tasks.
Automatic Speech Recognition (ASR) offers significant potential to reduce the workload of medical personnel, for example, through the automation of documentation tasks. While numerous benchmarks exist for the English language, specific evaluations for the German-speaking medical context are still lacking, particularly regarding the inclusion of dialects. In this article, we present a curated dataset of simulated doctor-patient conversations and evaluate a total of 29 different ASR models. The test field encompasses both open-weights models from the Whisper, Voxtral, and Wav2Vec2 families as well as commercial state-of-the-art APIs (AssemblyAI, Deepgram). For evaluation, we utilize three different metrics (WER, CER, BLEU) and provide an outlook on qualitative semantic analysis. The results demonstrate significant performance differences between the models: while the best systems already achieve very good Word Error Rates (WER) of partly below 3%, the error rates of other models, especially concerning medical terminology or dialect-influenced variations, are considerably higher.
The practical utility of Speech Emotion Recognition (SER) systems is undermined by their fragility to domain shifts, such as speaker variability, the distinction between acted and naturalistic emotions, and cross-corpus variations. While domain adaptation and fine-tuning are widely studied, they require either source data or labelled target data, which are often unavailable or raise privacy concerns in SER. Test-time adaptation (TTA) bridges this gap by adapting models at inference using only unlabeled target data. Yet, having been predominantly designed for image classification and speech recognition, the efficacy of TTA for mitigating the unique domain shifts in SER has not been investigated. In this paper, we present the first systematic evaluation and comparison covering 11 TTA methods across three representative SER tasks. The results indicate that backpropagation-free TTA methods are the most promising. Conversely, entropy minimization and pseudo-labeling generally fail, as their core assumption of a single, confident ground-truth label is incompatible with the inherent ambiguity of emotional expression. Further, no single method universally excels, and its effectiveness is highly dependent on the distributional shifts and tasks.
Speech Emotion Recognition models typically use single categorical labels, overlooking the inherent ambiguity of human emotions. Ambiguous Emotion Recognition addresses this by representing emotions as probability distributions, but progress is limited by unreliable ground-truth distributions inferred from sparse human annotations. This paper explores whether Large Audio-Language Models (ALMs) can mitigate the annotation bottleneck by generating high-quality synthetic annotations. We introduce a framework leveraging ALMs to create Synthetic Perceptual Proxies, augmenting human annotations to improve ground-truth distribution reliability. We validate these proxies through statistical analysis of their alignment with human distributions and evaluate their impact by fine-tuning ALMs with the augmented emotion distributions. Furthermore, to address class imbalance and enable unbiased evaluation, we propose DiME-Aug, a Distribution-aware Multimodal Emotion Augmentation strategy. Experiments on IEMOCAP and MSP-Podcast show that synthetic annotations enhance emotion distribution, especially in low-ambiguity regions where annotation agreement is high. However, benefits diminish for highly ambiguous emotions with greater human disagreement. This work provides the first evidence that ALMs could address annotation scarcity in ambiguous emotion recognition, but highlights the need for more advanced prompting or generation strategies to handle highly ambiguous cases.
Real-time automatic speech recognition systems are increasingly integrated into interactive applications, from voice assistants to live transcription services. However, scaling these systems to support multiple concurrent clients while maintaining low latency and high accuracy remains a major challenge. In this work, we present SWIM, a novel real-time ASR system built on top of OpenAI's Whisper model that enables true model-level parallelization for scalable, multilingual transcription. SWIM supports multiple concurrent audio streams without modifying the underlying model. It introduces a buffer merging strategy that maintains transcription fidelity while ensuring efficient resource usage. We evaluate SWIM in multi-client settings -- scaling up to 20 concurrent users -- and show that it delivers accurate real-time transcriptions in English, Italian, and Spanish, while maintaining low latency and high throughput. While Whisper-Streaming achieves a word error rate of approximately 8.2% with an average delay of approximately 3.4 s in a single-client, English-only setting, SWIM extends this capability to multilingual, multi-client environments. It maintains comparable accuracy with significantly lower delay -- around 2.4 s with 5 clients -- and continues to scale effectively up to 20 concurrent clients without degrading transcription quality and increasing overall throughput. Our approach advances scalable ASR by improving robustness and efficiency in dynamic, multi-user environments.
Catastrophic forgetting remains a major challenge for continual learning (CL) in automatic speech recognition (ASR), where models must adapt to new domains without losing performance on previously learned conditions. Several CL methods have been proposed for ASR, and, recently, weight averaging - where models are averaged in a merging step after fine-tuning - has proven effective as a simple memory-free strategy. However, it is heuristic in nature and ignores the underlying loss landscapes of the tasks, hindering adaptability. In this work, we propose Inverse Hessian Regularization (IHR), a memory-free approach for CL in ASR that incorporates curvature information into the merging step. After fine-tuning on a new task, the adaptation is adjusted through a Kronecker-factored inverse Hessian approximation of the previous task, ensuring that the model moves primarily in directions less harmful to past performance, while keeping the method lightweight. We evaluate IHR on two CL benchmarks and show that it significantly outperforms state-of-the-art baselines, reducing forgetting while improving adaptability. Ablation studies and analyses further confirm its effectiveness.