Abstract:Recent advances in language and speech modelling have made it possible to build autonomous voice assistants that understand and generate human dialogue in real time. These systems are increasingly being deployed in domains such as customer service and healthcare care, where they can automate repetitive tasks, reduce operational costs, and provide constant support around the clock. In this paper, we present a general methodology for cloning a conversational voice AI agent from a corpus of call recordings. Although the case study described in this paper uses telesales data to illustrate the approach, the underlying process generalizes to any domain where call transcripts are available. Our system listens to customers over the telephone, responds with a synthetic voice, and follows a structured playbook learned from top performing human agents. We describe the domain selection, knowledge extraction, and prompt engineering used to construct the agent, integrating automatic speech recognition, a large language model based dialogue manager, and text to speech synthesis into a streaming inference pipeline. The cloned agent is evaluated against human agents on a rubric of 22 criteria covering introduction, product communication, sales drive, objection handling, and closing. Blind tests show that the AI agent approaches human performance in routine aspects of the call while underperforming in persuasion and objection handling. We analyze these shortcomings and refine the prompt accordingly. The paper concludes with design lessons and avenues for future research, including large scale simulation and automated evaluation.
Abstract:Hand-eye calibration algorithms are mature and provide accurate transformation estimations for an effective camera-robot link but rely on a sufficiently wide range of calibration data to avoid errors and degenerate configurations. To solve the hand-eye problem in robotic-assisted minimally invasive surgery and also simplify the calibration procedure by using neural network method cooporating with the new objective function. We present a neural network-based solution that estimates the transformation from a sequence of images and kinematic data which significantly simplifies the calibration procedure. The network utilises the long short-term memory architecture to extract temporal information from the data and solve the hand-eye problem. The objective function is derived from the linear combination of remote centre of motion constraint, the re-projection error and its derivative to induce a small change in the hand-eye transformation. The method is validated with the data from da Vinci Si and the result shows that the estimated hand-eye matrix is able to re-project the end-effector from the robot coordinate to the camera coordinate within 10 to 20 pixels of accuracy in both testing dataset. The calibration performance is also superior to the previous neural network-based hand-eye method. The proposed algorithm shows that the calibration procedure can be simplified by using deep learning techniques and the performance is improved by the assumption of non-static hand-eye transformations.