What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Aug 27, 2025
Abstract:Centralized recommender systems encounter privacy leakage due to the need to collect user behavior and other private data. Hence, federated recommender systems (FedRec) have become a promising approach with an aggregated global model on the server. However, this distributed training paradigm suffers from embedding degradation caused by suboptimal personalization and dimensional collapse, due to the existence of sparse interactions and heterogeneous preferences. To this end, we propose a novel model-agnostic strategy for FedRec to strengthen the personalized embedding utility, which is called Personalized Local-Global Collaboration (PLGC). It is the first research in federated recommendation to alleviate the dimensional collapse issue. Particularly, we incorporate the frozen global item embedding table into local devices. Based on a Neural Tangent Kernel strategy that dynamically balances local and global information, PLGC optimizes personalized representations during forward inference, ultimately converging to user-specific preferences. Additionally, PLGC carries on a contrastive objective function to reduce embedding redundancy by dissolving dependencies between dimensions, thereby improving the backward representation learning process. We introduce PLGC as a model-agnostic personalized training strategy for federated recommendations that can be applied to existing baselines to alleviate embedding degradation. Extensive experiments on five real-world datasets have demonstrated the effectiveness and adaptability of PLGC, which outperforms various baseline algorithms.
Via

Aug 27, 2025
Abstract:Local news organizations face an urgent need to boost reader engagement amid declining circulation and competition from global media. Personalized news recommender systems offer a promising solution by tailoring content to user interests. Yet, conventional approaches often emphasize general preferences and may overlook nuanced or eclectic interests in local news. We propose a hybrid news recommender that integrates local and global preference models to improve engagement. Building on evidence of the value of localized models, our method unifies local and non-local predictors in one framework. The system adaptively combines recommendations from a local model, specialized in region-specific content, and a global model that captures broader preferences. Ensemble strategies and multiphase training balance the two. We evaluated the model on two datasets: a synthetic set based on Syracuse newspaper distributions and a Danish dataset (EB-NeRD) labeled for local and non-local content with an LLM. Results show our integrated approach outperforms single-model baselines in accuracy and coverage, suggesting improved personalization that can drive user engagement. The findings have practical implications for publishers, especially local outlets. By leveraging both community-specific and general user interests, the hybrid recommender can deliver more relevant content, increasing retention and subscriptions. In sum, this work introduces a new direction for recommender systems, bridging local and global models to revitalize local news consumption through scalable, personalized user experiences.
Via

Aug 27, 2025
Abstract:Academic choice is crucial in U.S. undergraduate education, allowing students significant freedom in course selection. However, navigating the complex academic environment is challenging due to limited information, guidance, and an overwhelming number of choices, compounded by time restrictions and the high demand for popular courses. Although career counselors exist, their numbers are insufficient, and course recommendation systems, though personalized, often lack insight into student perceptions and explanations to assess course relevance. In this paper, a deep learning-based concept extraction model is developed to efficiently extract relevant concepts from course descriptions to improve the recommendation process. Using this model, the study examines the effects of skill-based explanations within a serendipitous recommendation framework, tested through the AskOski system at the University of California, Berkeley. The findings indicate that these explanations not only increase user interest, particularly in courses with high unexpectedness, but also bolster decision-making confidence. This underscores the importance of integrating skill-related data and explanations into educational recommendation systems.
Via

Aug 27, 2025
Abstract:Extending recommender systems to federated learning (FL) frameworks to protect the privacy of users or platforms while making recommendations has recently gained widespread attention in academia. This is due to the natural coupling of recommender systems and federated learning architectures: the data originates from distributed clients (mostly mobile devices held by users), which are highly related to privacy. In a centralized recommender system (CenRec), the central server collects clients' data, trains the model, and provides the service. Whereas in federated recommender systems (FedRec), the step of data collecting is omitted, and the step of model training is offloaded to each client. The server only aggregates the model and other knowledge, thus avoiding client privacy leakage. Some surveys of federated recommender systems discuss and analyze related work from the perspective of designing FL systems. However, their utility drops by ignoring specific recommendation scenarios' unique characteristics and practical challenges. For example, the statistical heterogeneity issue in cross-domain FedRec originates from the label drift of the data held by different platforms, which is mainly caused by the recommender itself, but not the federated architecture. Therefore, it should focus more on solving specific problems in real-world recommendation scenarios to encourage the deployment FedRec. To this end, this review comprehensively analyzes the coupling of recommender systems and federated learning from the perspective of recommendation researchers and practitioners. We establish a clear link between recommendation scenarios and FL frameworks, systematically analyzing scenario-specific approaches, practical challenges, and potential opportunities. We aim to develop guidance for the real-world deployment of FedRec, bridging the gap between existing research and applications.
Via

Aug 27, 2025
Abstract:Graph Convolutional Networks (GCNs) have become increasingly popular in recommendation systems. However, recent studies have shown that GCN-based models will cause sensitive information to disseminate widely in the graph structure, amplifying data bias and raising fairness concerns. While various fairness methods have been proposed, most of them neglect the impact of biased data on representation learning, which results in limited fairness improvement. Moreover, some studies have focused on constructing fair and balanced data distributions through data augmentation, but these methods significantly reduce utility due to disruption of user preferences. In this paper, we aim to design a fair recommendation method from the perspective of data augmentation to improve fairness while preserving recommendation utility. To achieve fairness-aware data augmentation with minimal disruption to user preferences, we propose two prior hypotheses. The first hypothesis identifies sensitive interactions by comparing outcomes of performance-oriented and fairness-aware recommendations, while the second one focuses on detecting sensitive features by analyzing feature similarities between biased and debiased representations. Then, we propose a dual data augmentation framework for fair recommendation, which includes two data augmentation strategies to generate fair augmented graphs and feature representations. Furthermore, we introduce a debiasing learning method that minimizes the dependence between the learned representations and sensitive information to eliminate bias. Extensive experiments on two real-world datasets demonstrate the superiority of our proposed framework.
* Accepted by CIKM 2025
Via

Aug 26, 2025
Abstract:Differentially private text sanitization refers to the process of privatizing texts under the framework of Differential Privacy (DP), providing provable privacy guarantees while also empirically defending against adversaries seeking to harm privacy. Despite their simplicity, DP text sanitization methods operating at the word level exhibit a number of shortcomings, among them the tendency to leave contextual clues from the original texts due to randomization during sanitization $\unicode{x2013}$ this we refer to as $\textit{contextual vulnerability}$. Given the powerful contextual understanding and inference capabilities of Large Language Models (LLMs), we explore to what extent LLMs can be leveraged to exploit the contextual vulnerability of DP-sanitized texts. We expand on previous work not only in the use of advanced LLMs, but also in testing a broader range of sanitization mechanisms at various privacy levels. Our experiments uncover a double-edged sword effect of LLM-based data reconstruction attacks on privacy and utility: while LLMs can indeed infer original semantics and sometimes degrade empirical privacy protections, they can also be used for good, to improve the quality and privacy of DP-sanitized texts. Based on our findings, we propose recommendations for using LLM data reconstruction as a post-processing step, serving to increase privacy protection by thinking adversarially.
* 15 pages, 4 figures, 8 tables. Accepted to WPES @ CCS 2025
Via

Aug 26, 2025
Abstract:LLM app stores are quickly emerging as platforms that gather a wide range of intelligent applications based on LLMs, giving users many choices for content creation, coding support, education, and more. However, the current methods for ranking and recommending apps in these stores mostly rely on static metrics like user activity and favorites, which makes it hard for users to efficiently find high-quality apps. To address these challenges, we propose LaQual, an automated framework for evaluating the quality of LLM apps. LaQual consists of three main stages: first, it labels and classifies LLM apps in a hierarchical way to accurately match them to different scenarios; second, it uses static indicators, such as time-weighted user engagement and functional capability metrics, to filter out low-quality apps; and third, it conducts a dynamic, scenario-adaptive evaluation, where the LLM itself generates scenario-specific evaluation metrics, scoring rules, and tasks for a thorough quality assessment. Experiments on a popular LLM app store show that LaQual is effective. Its automated scores are highly consistent with human judgments (with Spearman's rho of 0.62 and p=0.006 in legal consulting, and rho of 0.60 and p=0.009 in travel planning). By effectively screening, LaQual can reduce the pool of candidate LLM apps by 66.7% to 81.3%. User studies further confirm that LaQual significantly outperforms baseline systems in decision confidence, comparison efficiency (with average scores of 5.45 compared to 3.30), and the perceived value of its evaluation reports (4.75 versus 2.25). Overall, these results demonstrate that LaQual offers a scalable, objective, and user-centered solution for finding and recommending high-quality LLM apps in real-world use cases.
Via

Aug 26, 2025
Abstract:Dataset selection is crucial for offline recommender system experiments, as mismatched data (e.g., sparse interaction scenarios require datasets with low user-item density) can lead to unreliable results. Yet, 86\% of ACM RecSys 2024 papers provide no justification for their dataset choices, with most relying on just four datasets: Amazon (38\%), MovieLens (34\%), Yelp (15\%), and Gowalla (12\%). While Algorithm Performance Spaces (APS) were proposed to guide dataset selection, their adoption has been limited due to the absence of an intuitive, interactive tool for APS exploration. Therefore, we introduce the APS Explorer, a web-based visualization tool for interactive APS exploration, enabling data-driven dataset selection. The APS Explorer provides three interactive features: (1) an interactive PCA plot showing dataset similarity via performance patterns, (2) a dynamic meta-feature table for dataset comparisons, and (3) a specialized visualization for pairwise algorithm performance.
Via

Aug 26, 2025
Abstract:Underwater object detection is critical for monitoring marine ecosystems but poses unique challenges, including degraded image quality, imbalanced class distribution, and distinct visual characteristics. Not every species is detected equally well, yet underlying causes remain unclear. We address two key research questions: 1) What factors beyond data quantity drive class-specific performance disparities? 2) How can we systematically improve detection of under-performing marine species? We manipulate the DUO dataset to separate the object detection task into localization and classification and investigate the under-performance of the scallop class. Localization analysis using YOLO11 and TIDE finds that foreground-background discrimination is the most problematic stage regardless of data quantity. Classification experiments reveal persistent precision gaps even with balanced data, indicating intrinsic feature-based challenges beyond data scarcity and inter-class dependencies. We recommend imbalanced distributions when prioritizing precision, and balanced distributions when prioritizing recall. Improving under-performing classes should focus on algorithmic advances, especially within localization modules. We publicly release our code and datasets.
* 10 pages
Via

Aug 26, 2025
Abstract:Plain Language Summarization (PLS) aims to distill complex documents into accessible summaries for non-expert audiences. In this paper, we conduct a thorough survey of PLS literature, and identify that the current standard practice for readability evaluation is to use traditional readability metrics, such as Flesch-Kincaid Grade Level (FKGL). However, despite proven utility in other fields, these metrics have not been compared to human readability judgments in PLS. We evaluate 8 readability metrics and show that most correlate poorly with human judgments, including the most popular metric, FKGL. We then show that Language Models (LMs) are better judges of readability, with the best-performing model achieving a Pearson correlation of 0.56 with human judgments. Extending our analysis to PLS datasets, which contain summaries aimed at non-expert audiences, we find that LMs better capture deeper measures of readability, such as required background knowledge, and lead to different conclusions than the traditional metrics. Based on these findings, we offer recommendations for best practices in the evaluation of plain language summaries. We release our analysis code and survey data.
Via
