Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
A Multinomial Logit (MNL) model is composed of a finite universe of items $[n]=\{1,..., n\}$, each assigned a positive weight. A query specifies an admissible subset -- called a slate -- and the model chooses one item from that slate with probability proportional to its weight. This query model is also known as the Plackett-Luce model or conditional sampling oracle in the literature. Although MNLs have been studied extensively, a basic computational question remains open: given query access to slates, how efficiently can we learn weights so that, for every slate, the induced choice distribution is within total variation distance $\varepsilon$ of the ground truth? This question is central to MNL learning and has direct implications for modern recommender system interfaces. We provide two algorithms for this task, one with adaptive queries and one with non-adaptive queries. Each algorithm outputs an MNL $M'$ that induces, for each slate $S$, a distribution $M'_S$ on $S$ that is within $\varepsilon$ total variation distance of the true distribution. Our adaptive algorithm makes $O\left(\frac{n}{\varepsilon^{3}}\log n\right)$ queries, while our non-adaptive algorithm makes $O\left(\frac{n^{2}}{\varepsilon^{3}}\log n \log\frac{n}{\varepsilon}\right)$ queries. Both algorithms query only slates of size two and run in time proportional to their query complexity. We complement these upper bounds with lower bounds of $Ω\left(\frac{n}{\varepsilon^{2}}\log n\right)$ for adaptive queries and $Ω\left(\frac{n^{2}}{\varepsilon^{2}}\log n\right)$ for non-adaptive queries, thus proving that our adaptive algorithm is optimal in its dependence on the support size $n$, while the non-adaptive one is tight within a $\log n$ factor.
Community detection is crucial for applications like targeted marketing and recommendation systems. Traditional methods rely on network structure, and embedding-based models integrate semantic information. However, there is a challenge when a model leverages local and global information from complex structures like social networks. Graph Neural Networks (GNNs) and Transformers have shown superior performance in capturing local and global relationships. In this paper, We propose Graph Integrated Transformer for Community Detection (GIT-CD), a hybrid model combining GNNs and Transformer-based attention mechanisms to enhance community detection in social networks. Specifically, the GNN module captures local graph structures, while the Transformer module models long-range dependencies. A self-optimizing clustering module refines community assignments using K-Means, silhouette loss, and KL divergence minimization. Experimental results on benchmark datasets show that GIT-CD outperforms state-of-the-art models, making it a robust approach for detecting meaningful communities in complex social networks.
News recommender systems are increasingly driven by black-box models, offering little transparency for editorial decision-making. In this work, we introduce a transparent recommender system that uses fuzzy neural networks to learn human-readable rules from behavioral data for predicting article clicks. By extracting the rules at configurable thresholds, we can control rule complexity and thus, the level of interpretability. We evaluate our approach on two publicly available news datasets (i.e., MIND and EB-NeRD) and show that we can accurately predict click behavior compared to several established baselines, while learning human-readable rules. Furthermore, we show that the learned rules reveal news consumption patterns, enabling editors to align content curation goals with target audience behavior.
Learning from implicit feedback has become the standard paradigm for modern recommender systems. However, this setting is fraught with the persistent challenge of false negatives, where unobserved user-item interactions are not necessarily indicative of negative preference. To address this issue, this paper introduces a novel and principled loss function, named Corrected and Weighted (CW) loss, that systematically corrects for the impact of false negatives within the training objective. Our approach integrates two key techniques. First, inspired by Positive-Unlabeled learning, we debias the negative sampling process by re-calibrating the assumed negative distribution. By theoretically approximating the true negative distribution (p-) using the observable general data distribution (p) and the positive interaction distribution (p^+), our method provides a more accurate estimate of the likelihood that a sampled unlabeled item is truly negative. Second, we introduce a dynamic re-weighting mechanism that modulates the importance of each negative instance based on the model's current prediction. This scheme encourages the model to enforce a larger ranking margin between positive items and confidently predicted (i.e., easy) negative items, while simultaneously down-weighting the penalty on uncertain negatives that have a higher probability of being false negatives. A key advantage of our approach is its elegance and efficiency; it requires no complex modifications to the data sampling process or significant computational overhead, making it readily applicable to a wide array of existing recommendation models. Extensive experiments conducted on four large-scale, sparse benchmark datasets demonstrate the superiority of our proposed loss. The results show that our method consistently and significantly outperforms a suite of state-of-the-art loss functions across multiple ranking-oriented metrics.
The use of Large Language Models (LLMs) in police operations is growing, yet an evaluation framework tailored to police operations remains absent. While LLM's responses may not always be legally incorrect, their unverified use still can lead to severe issues such as unlawful arrests and improper evidence collection. To address this, we propose PAS (Police Action Scenarios), a systematic framework covering the entire evaluation process. Applying this framework, we constructed a novel QA dataset from over 8,000 official documents and established key metrics validated through statistical analysis with police expert judgements. Experimental results show that commercial LLMs struggle with our new police-related tasks, particularly in providing fact-based recommendations. This study highlights the necessity of an expandable evaluation framework to ensure reliable AI-driven police operations. We release our data and prompt template.
Large foundation models (LFMs) transform healthcare AI in prevention, diagnostics, and treatment. However, whether LFMs can provide truly personalized treatment recommendations remains an open question. Recent research has revealed multiple challenges for personalization, including the fundamental generalizability paradox: models achieving high accuracy in one clinical study perform at chance level in others, demonstrating that personalization and external validity exist in tension. This exemplifies broader contradictions in AI-driven healthcare: the privacy-performance paradox, scale-specificity paradox, and the automation-empathy paradox. As another challenge, the degree of causal understanding required for personalized recommendations, as opposed to mere predictive capacities of LFMs, remains an open question. N-of-1 trials -- crossover self-experiments and the gold standard for individual causal inference in personalized medicine -- resolve these tensions by providing within-person causal evidence while preserving privacy through local experimentation. Despite their impressive capabilities, this paper argues that LFMs cannot replace N-of-1 trials. We argue that LFMs and N-of-1 trials are complementary: LFMs excel at rapid hypothesis generation from population patterns using multimodal data, while N-of-1 trials excel at causal validation for a given individual. We propose a hybrid framework that combines the strengths of both to enable personalization and navigate the identified paradoxes: LFMs generate ranked intervention candidates with uncertainty estimates, which trigger subsequent N-of-1 trials. Clarifying the boundary between prediction and causation and explicitly addressing the paradoxical tensions are essential for responsible AI integration in personalized medicine.
Clinical practice guidelines (CPGs) provide evidence-based recommendations for patient care; however, integrating them into Artificial Intelligence (AI) remains challenging. Previous approaches, such as rule-based systems, face significant limitations, including poor interpretability, inconsistent adherence to guidelines, and narrow domain applicability. To address this, we develop and validate CPGPrompt, an auto-prompting system that converts narrative clinical guidelines into large language models (LLMs). Our framework translates CPGs into structured decision trees and utilizes an LLM to dynamically navigate them for patient case evaluation. Synthetic vignettes were generated across three domains (headache, lower back pain, and prostate cancer) and distributed into four categories to test different decision scenarios. System performance was assessed on both binary specialty-referral decisions and fine-grained pathway-classification tasks. The binary specialty referral classification achieved consistently strong performance across all domains (F1: 0.85-1.00), with high recall (1.00 $\pm$ 0.00). In contrast, multi-class pathway assignment showed reduced performance, with domain-specific variations: headache (F1: 0.47), lower back pain (F1: 0.72), and prostate cancer (F1: 0.77). Domain-specific performance differences reflected the structure of each guideline. The headache guideline highlighted challenges with negation handling. The lower back pain guideline required temporal reasoning. In contrast, prostate cancer pathways benefited from quantifiable laboratory tests, resulting in more reliable decision-making.
Recent years have witnessed success of sequential modeling, generative recommender, and large language model for recommendation. Though the scaling law has been validated for sequential models, it showed inefficiency in computational capacity when considering real-world applications like recommendation, due to the non-linear(quadratic) increasing nature of the transformer model. To improve the efficiency of the sequential model, we introduced a novel approach to sequential recommendation that leverages personalization techniques to enhance efficiency and performance. Our method compresses long user interaction histories into learnable tokens, which are then combined with recent interactions to generate recommendations. This approach significantly reduces computational costs while maintaining high recommendation accuracy. Our method could be applied to existing transformer based recommendation models, e.g., HSTU and HLLM. Extensive experiments on multiple sequential models demonstrate its versatility and effectiveness. Source code is available at \href{https://github.com/facebookresearch/PerSRec}{https://github.com/facebookresearch/PerSRec}.
Pharmaceutical three-dimensional (3D) printing is an advanced fabrication technology with the potential to enable truly personalised dosage forms. Recent studies have integrated artificial intelligence (AI) to accelerate formulation and process development, drastically transforming current approaches to pharmaceutical 3D printing. To date, most AI-driven efforts remain narrowly focused, while failing to account for the broader formulation challenges inherent to the technology. Recent advances in AI have introduced artificial general intelligence concepts, wherein systems extend beyond conventional predictive modelling toward more generalised, human-like reasoning. In this work, we investigate the application of large language models (LLMs), fine-tuned on a fused deposition modelling (FDM) dataset comprising over 1400 formulations, to recommend suitable excipients based on active pharmaceutical ingredient (API) dose, and predict filament mechanical properties. Four LLM architectures were fine-tuned, with systematic evaluation of both fine-tuning and generative parameter configurations. Our results demonstrate that Llama2 was best suited for recommending excipients for FDM formulations. Additionally, model selection and parameterisation significantly influence performance, with smaller LLMs exhibiting instances of catastrophic forgetting. Furthermore, we demonstrate: (i) even with relatively small dataset of over 1400 formulations, it can lead to model catastrophic forgetting; (ii) standard LLM metrics only evaluate linguistic performance but not formulation processability; and (iii) LLMs trained on biomedically-related data do not always produce the best results. Addressing these challenges is essential to advancing LLMs beyond linguistic proficiency and toward reliable systems for pharmaceutical formulation development.
Session-based recommendation aims to predict the next item that anonymous users may be interested in, based on their current session interactions. Recent studies have demonstrated that retrieving neighbor sessions to augment the current session can effectively alleviate the data sparsity issue and improve recommendation performance. However, existing methods typically rely on explicitly observed session data, neglecting latent neighbors - not directly observed but potentially relevant within the interest space - thereby failing to fully exploit the potential of neighbor sessions in recommendation. To address the above limitation, we propose a novel model of diffusion-based latent neighbor generation for session-based recommendation, named DiffSBR. Specifically, DiffSBR leverages two diffusion modules, including retrieval-augmented diffusion and self-augmented diffusion, to generate high-quality latent neighbors. In the retrieval-augmented diffusion module, we leverage retrieved neighbors as guiding signals to constrain and reconstruct the distribution of latent neighbors. Meanwhile, we adopt a training strategy that enables the retriever to learn from the feedback provided by the generator. In the self-augmented diffusion module, we explicitly guide the generation of latent neighbors by injecting the current session's multi-modal signals through contrastive learning. After obtaining the generated latent neighbors, we utilize them to enhance session representations for improving session-based recommendation. Extensive experiments on four public datasets show that DiffSBR generates effective latent neighbors and improves recommendation performance against state-of-the-art baselines.