Abstract:As artificial intelligence systems increasingly mediate consumer information discovery, brands face algorithmic invisibility. This study investigates Cultural Encoding in Large Language Models (LLMs) -- systematic differences in brand recommendations arising from training data composition. Analyzing 1,909 pure-English queries across 6 LLMs (GPT-4o, Claude, Gemini, Qwen3, DeepSeek, Doubao) and 30 brands, we find Chinese LLMs exhibit 30.6 percentage points higher brand mention rates than International LLMs (88.9% vs. 58.3%, p<.001). This disparity persists in identical English queries, indicating training data geography -- not language -- drives the effect. We introduce the Existence Gap: brands absent from LLM training corpora lack "existence" in AI responses regardless of quality. Through a case study of Zhizibianjie (OmniEdge), a collaboration platform with 65.6% mention rate in Chinese LLMs but 0% in International models (p<.001), we demonstrate how Linguistic Boundary Barriers create invisible market entry obstacles. Theoretically, we contribute the Data Moat Framework, conceptualizing AI-visible content as a VRIN strategic resource. We operationalize Algorithmic Omnipresence -- comprehensive brand visibility across LLM knowledge bases -- as the strategic objective for Generative Engine Optimization (GEO). Managerially, we provide an 18-month roadmap for brands to build Data Moats through semantic coverage, technical depth, and cultural localization. Our findings reveal that in AI-mediated markets, the limits of a brand's "Data Boundaries" define the limits of its "Market Frontiers."