Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
High-quality medical imaging datasets are essential for training deep learning models, but their unauthorized use raises serious copyright and ethical concerns. Medical imaging presents a unique challenge for existing dataset ownership verification methods designed for natural images, as static watermark patterns generated in fixed-scale images scale poorly dynamic and high-resolution scans with limited visual diversity and subtle anatomical structures, while preserving diagnostic quality. In this paper, we propose X-Mark, a sample-specific clean-label watermarking method for chest x-ray copyright protection. Specifically, X-Mark uses a conditional U-Net to generate unique perturbations within salient regions of each sample. We design a multi-component training objective to ensure watermark efficacy, robustness against dynamic scaling processes while preserving diagnostic quality and visual-distinguishability. We incorporate Laplacian regularization into our training objective to penalize high-frequency perturbations and achieve watermark scale-invariance. Ownership verification is performed in a black-box setting to detect characteristic behaviors in suspicious models. Extensive experiments on CheXpert verify the effectiveness of X-Mark, achieving WSR of 100% and reducing probability of false positives in Ind-M scenario by 12%, while demonstrating resistance to potential adaptive attacks.
End-to-end autonomous driving systems have achieved significant progress, yet their adversarial robustness remains largely underexplored. In this work, we conduct a closed-loop evaluation of state-of-the-art autonomous driving agents under black-box adversarial threat models in CARLA. Specifically, we consider three representative attack vectors on the visual perception pipeline: (i) a physics-based blur attack induced by acoustic waves, (ii) an electromagnetic interference attack that distorts captured images, and (iii) a digital attack that adds ghost objects as carefully crafted bounded perturbations on images. Our experiments on two advanced agents, Transfuser and Interfuser, reveal severe vulnerabilities to such attacks, with driving scores dropping by up to 99% in the worst case, raising valid safety concerns. To help mitigate such threats, we further propose a lightweight Attack Detection model for Autonomous Driving systems (AD$^2$) based on attention mechanisms that capture spatial-temporal consistency. Comprehensive experiments across multi-camera inputs on CARLA show that our detector achieves superior detection capability and computational efficiency compared to existing approaches.
Millimeter wave integrated sensing and communication (ISAC) systems are being researched for next-generation intelligent transportation systems. Here, radar and communication functionalities share a common spectrum and hardware resources in a time-multiplexed manner. The objective of the radar is to first scan the angular search space and detect and localize mobile users/targets in the presence of discrete clutter scatterers. Subsequently, this information is used to direct highly directional beams toward these mobile users for communication service. The choice of radar parameters such as the radar duty cycle and the corresponding beamwidth are critical for realizing high communication throughput. In this work, we use the stochastic geometry-based mathematical framework to analyze the radar operating metrics as a function of diverse radar, target, and clutter parameters and subsequently use these results to study the network throughput of the ISAC system. The results are validated through Monte Carlo simulations.
Vision-language models (VLMs) have recently emerged as powerful representation learning systems that align visual observations with natural language concepts, offering new opportunities for semantic reasoning in safety-critical autonomous driving. This paper investigates how vision-language representations support driving scene safety assessment and decision-making when integrated into perception, prediction, and planning pipelines. We study three complementary system-level use cases. First, we introduce a lightweight, category-agnostic hazard screening approach leveraging CLIP-based image-text similarity to produce a low-latency semantic hazard signal. This enables robust detection of diverse and out-of-distribution road hazards without explicit object detection or visual question answering. Second, we examine the integration of scene-level vision-language embeddings into a transformer-based trajectory planning framework using the Waymo Open Dataset. Our results show that naively conditioning planners on global embeddings does not improve trajectory accuracy, highlighting the importance of representation-task alignment and motivating the development of task-informed extraction methods for safety-critical planning. Third, we investigate natural language as an explicit behavioral constraint on motion planning using the doScenes dataset. In this setting, passenger-style instructions grounded in visual scene elements suppress rare but severe planning failures and improve safety-aligned behavior in ambiguous scenarios. Taken together, these findings demonstrate that vision-language representations hold significant promise for autonomous driving safety when used to express semantic risk, intent, and behavioral constraints. Realizing this potential is fundamentally an engineering problem requiring careful system design and structured grounding rather than direct feature injection.
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality, despite the widespread implementation of prophylactic initiatives aimed at detecting and removing precancerous polyps. Although screening effectively reduces incidence, a notable portion of patients initially diagnosed with low-grade adenomatous polyps will still develop CRC later in life, even without the presence of known high-risk syndromes. Identifying which low-risk patients are at higher risk of progression is a critical unmet need for tailored surveillance and preventative therapeutic strategies. Traditional histological assessment of adenomas, while fundamental, may not fully capture subtle architectural or cytological features indicative of malignant potential. Advancements in digital pathology and machine learning provide an opportunity to analyze whole-slide images (WSIs) comprehensively and objectively. This study investigates whether machine learning algorithms, specifically convolutional neural networks (CNNs), can detect subtle histological features in WSIs of low-grade tubular adenomas that are predictive of a patient's long-term risk of developing colorectal cancer.
Detecting small and distant objects remains challenging for object detectors due to scale variation, low resolution, and background clutter. Safety-critical applications require reliable detection of these objects for safe planning. Depth information can improve detection, but existing approaches require complex, model-specific architectural modifications. We provide a theoretical analysis followed by an empirical investigation of the depth-detection relationship. Together, they explain how depth causes systematic performance degradation and why depth-informed supervision mitigates it. We introduce DepthPrior, a framework that uses depth as prior knowledge rather than as a fused feature, providing comparable benefits without modifying detector architectures. DepthPrior consists of Depth-Based Loss Weighting (DLW) and Depth-Based Loss Stratification (DLS) during training, and Depth-Aware Confidence Thresholding (DCT) during inference. The only overhead is the initial cost of depth estimation. Experiments across four benchmarks (KITTI, MS COCO, VisDrone, SUN RGB-D) and two detectors (YOLOv11, EfficientDet) demonstrate the effectiveness of DepthPrior, achieving up to +9% mAP$_S$ and +7% mAR$_S$ for small objects, with inference recovery rates as high as 95:1 (true vs. false detections). DepthPrior offers these benefits without additional sensors, architectural changes, or performance costs. Code is available at https://github.com/mos-ks/DepthPrior.
Sweetpotato weevils (Cylas spp.) are considered among the most destructive pests impacting sweetpotato production, particularly in sub-Saharan Africa. Traditional methods for assessing weevil damage, predominantly relying on manual scoring, are labour-intensive, subjective, and often yield inconsistent results. These challenges significantly hinder breeding programs aimed at developing resilient sweetpotato varieties. This study introduces a computer vision-based approach for the automated evaluation of weevil damage in both field and laboratory contexts. In the field settings, we collected data to train classification models to predict root-damage severity levels, achieving a test accuracy of 71.43%. Additionally, we established a laboratory dataset and designed an object detection pipeline employing YOLO12, a leading real-time detection model. This methodology incorporated a two-stage laboratory pipeline that combined root segmentation with a tiling strategy to improve the detectability of small objects. The resulting model demonstrated a mean average precision of 77.7% in identifying minute weevil feeding holes. Our findings indicate that computer vision technologies can provide efficient, objective, and scalable assessment tools that align seamlessly with contemporary breeding workflows. These advancements represent a significant improvement in enhancing phenotyping efficiency within sweetpotato breeding programs and play a crucial role in mitigating the detrimental effects of weevils on food security.
High-quality annotated datasets are crucial for advancing machine learning in medical image analysis. However, a critical gap exists: most datasets either offer a single, clean ground truth, which hides real-world expert disagreement, or they provide multiple annotations without a separate gold standard for objective evaluation. To bridge this gap, we introduce CytoCrowd, a new public benchmark for cytology analysis. The dataset features 446 high-resolution images, each with two key components: (1) raw, conflicting annotations from four independent pathologists, and (2) a separate, high-quality gold-standard ground truth established by a senior expert. This dual structure makes CytoCrowd a versatile resource. It serves as a benchmark for standard computer vision tasks, such as object detection and classification, using the ground truth. Simultaneously, it provides a realistic testbed for evaluating annotation aggregation algorithms that must resolve expert disagreements. We provide comprehensive baseline results for both tasks. Our experiments demonstrate the challenges presented by CytoCrowd and establish its value as a resource for developing the next generation of models for medical image analysis.
When embodied AI is expanding from traditional object detection and recognition to more advanced tasks of robot manipulation and actuation planning, visual spatial reasoning from the video inputs is necessary to perceive the spatial relationships of objects and guide device actions. However, existing visual language models (VLMs) have very weak capabilities in spatial reasoning due to the lack of knowledge about 3D spatial information, especially when the reasoning task involve complex spatial relations across multiple video frames. In this paper, we present a new inference-time computing technique for on-device embodied AI, namely \emph{MosaicThinker}, which enhances the on-device small VLM's spatial reasoning capabilities on difficult cross-frame reasoning tasks. Our basic idea is to integrate fragmented spatial information from multiple frames into a unified space representation of global semantic map, and further guide the VLM's spatial reasoning over the semantic map via a visual prompt. Experiment results show that our technique can greatly enhance the accuracy of cross-frame spatial reasoning on resource-constrained embodied AI devices, over reasoning tasks with diverse types and complexities.
Insect vision supports complex behaviors including associative learning, navigation, and object detection, and has long motivated computational models for understanding biological visual processing. However, many contemporary models prioritize task performance while neglecting biologically grounded processing pathways. Here, we introduce a bio-inspired vision model that captures principles of the insect visual system to transform dense visual input into sparse, discriminative codes. The model is trained using a fully self-supervised contrastive objective, enabling representation learning without labeled data and supporting reuse across tasks without reliance on domain-specific classifiers. We evaluated the resulting representations on flower recognition tasks and natural image benchmarks. The model consistently produced reliable sparse codes that distinguish visually similar inputs. To support different modelling and deployment uses, we have implemented the model as both an artificial neural network and a spiking neural network. In a simulated localization setting, our approach outperformed a simple image downsampling comparison baseline, highlighting the functional benefit of incorporating neuromorphic visual processing pathways. Collectively, these results advance insect computational modelling by providing a generalizable bio-inspired vision model capable of sparse computation across diverse tasks.