Text classification is the process of categorizing text documents into predefined categories or labels.
This paper proposes a unimodal aggregation (UMA) based nonautoregressive model for both English and Mandarin speech recognition. The original UMA explicitly segments and aggregates acoustic frames (with unimodal weights that first monotonically increase and then decrease) of the same text token to learn better representations than regular connectionist temporal classification (CTC). However, it only works well in Mandarin. It struggles with other languages, such as English, for which a single syllable may be tokenized into multiple fine-grained tokens, or a token spans fewer than 3 acoustic frames and fails to form unimodal weights. To address this problem, we propose allowing each UMA-aggregated frame map to multiple tokens, via a simple split module that generates two tokens from each aggregated frame before computing the CTC loss.
The output of large language models (LLM) is unstable, due to both non-determinism of the decoding process as well as to prompt brittleness. While the intrinsic non-determinism of LLM generation may mimic existing uncertainty in human annotations through distributional shifts in outputs, it is largely assumed, yet unexplored, that the prompt brittleness effect is unique to LLMs. This raises the question: do human annotators show similar sensitivity to instruction changes? If so, should prompt brittleness in LLMs be considered problematic? One may alternatively hypothesize that prompt brittleness correctly reflects human annotation variances. To fill this research gap, we systematically compare the effects of prompt modifications on LLMs and identical instruction modifications for human annotators, focusing on the question of whether humans are similarly sensitive to prompt perturbations. To study this, we prompt both humans and LLMs for a set of text classification tasks conditioned on prompt variations. Our findings indicate that both humans and LLMs exhibit increased brittleness in response to specific types of prompt modifications, particularly those involving the substitution of alternative label sets or label formats. However, the distribution of human judgments is less affected by typographical errors and reversed label order than that of LLMs.
Face forgery detection faces a critical challenge: a persistent gap between offline benchmarks and real-world efficacy,which we attribute to the ecological invalidity of training data.This work introduces Agent4FaceForgery to address two fundamental problems: (1) how to capture the diverse intents and iterative processes of human forgery creation, and (2) how to model the complex, often adversarial, text-image interactions that accompany forgeries in social media. To solve this,we propose a multi-agent framework where LLM-poweredagents, equipped with profile and memory modules, simulate the forgery creation process. Crucially, these agents interact in a simulated social environment to generate samples labeled for nuanced text-image consistency, moving beyond simple binary classification. An Adaptive Rejection Sampling (ARS) mechanism ensures data quality and diversity. Extensive experiments validate that the data generated by our simulationdriven approach brings significant performance gains to detectors of multiple architectures, fully demonstrating the effectiveness and value of our framework.
Multi-label classification has broad applications and depends on powerful representations capable of capturing multi-label interactions. We introduce \textit{Diff-Feat}, a simple but powerful framework that extracts intermediate features from pre-trained diffusion-Transformer models for images and text, and fuses them for downstream tasks. We observe that for vision tasks, the most discriminative intermediate feature along the diffusion process occurs at the middle step and is located in the middle block in Transformer. In contrast, for language tasks, the best feature occurs at the noise-free step and is located in the deepest block. In particular, we observe a striking phenomenon across varying datasets: a mysterious "Layer $12$" consistently yields the best performance on various downstream classification tasks for images (under DiT-XL/2-256$\times$256). We devise a heuristic local-search algorithm that pinpoints the locally optimal "image-text"$\times$"block-timestep" pair among a few candidates, avoiding an exhaustive grid search. A simple fusion-linear projection followed by addition-of the selected representations yields state-of-the-art performance: 98.6\% mAP on MS-COCO-enhanced and 45.7\% mAP on Visual Genome 500, surpassing strong CNN, graph, and Transformer baselines by a wide margin. t-SNE and clustering metrics further reveal that \textit{Diff-Feat} forms tighter semantic clusters than unimodal counterparts. The code is available at https://github.com/lt-0123/Diff-Feat.
Unsupervised analysis of text corpora is challenging, especially in data-scarce domains where traditional topic models struggle. While these models offer a solution, they typically describe clusters with lists of keywords that require significant manual effort to interpret and often lack semantic coherence. To address this critical interpretability gap, we introduce Recursive Thematic Partitioning (RTP), a novel framework that leverages Large Language Models (LLMs) to interactively build a binary tree. Each node in the tree is a natural language question that semantically partitions the data, resulting in a fully interpretable taxonomy where the logic of each cluster is explicit. Our experiments demonstrate that RTP's question-driven hierarchy is more interpretable than the keyword-based topics from a strong baseline like BERTopic. Furthermore, we establish the quantitative utility of these clusters by showing they serve as powerful features in downstream classification tasks, particularly when the data's underlying themes correlate with the task labels. RTP introduces a new paradigm for data exploration, shifting the focus from statistical pattern discovery to knowledge-driven thematic analysis. Furthermore, we demonstrate that the thematic paths from the RTP tree can serve as structured, controllable prompts for generative models. This transforms our analytical framework into a powerful tool for synthesis, enabling the consistent imitation of specific characteristics discovered in the source corpus.
Sentiment classification in short text datasets faces significant challenges such as class imbalance, limited training samples, and the inherent subjectivity of sentiment labels -- issues that are further intensified by the limited context in short texts. These factors make it difficult to resolve ambiguity and exacerbate data sparsity, hindering effective learning. In this paper, we evaluate the effectiveness of small Transformer-based models (i.e., BERT and RoBERTa, with fewer than 1 billion parameters) for multi-label sentiment classification, with a particular focus on short-text settings. Specifically, we evaluated three key factors influencing model performance: (1) continued domain-specific pre-training, (2) data augmentation using automatically generated examples, specifically generative data augmentation, and (3) architectural variations of the classification head. Our experiment results show that data augmentation improves classification performance, while continued pre-training on augmented datasets can introduce noise rather than boost accuracy. Furthermore, we confirm that modifications to the classification head yield only marginal benefits. These findings provide practical guidance for optimizing BERT-based models in resource-constrained settings and refining strategies for sentiment classification in short-text datasets.
Vision-language models (VLMs) have enabled strong zero-shot classification through image-text alignment. Yet, their purely visual inference capabilities remain under-explored. In this work, we conduct a comprehensive evaluation of both language-guided and vision-only image classification with a diverse set of dual-encoder VLMs, including both well-established and recent models such as SigLIP 2 and RADIOv2.5. The performance is compared in a standard setup on the ImageNet-1k validation set and its label-corrected variant. The key factors affecting accuracy are analysed, including prompt design, class diversity, the number of neighbours in k-NN, and reference set size. We show that language and vision offer complementary strengths, with some classes favouring textual prompts and others better handled by visual similarity. To exploit this complementarity, we introduce a simple, learning-free fusion method based on per-class precision that improves classification performance. The code is available at: https://github.com/gonikisgo/bmvc2025-vlm-image-recognition.
We present AToken, the first unified visual tokenizer that achieves both high-fidelity reconstruction and semantic understanding across images, videos, and 3D assets. Unlike existing tokenizers that specialize in either reconstruction or understanding for single modalities, AToken encodes these diverse visual inputs into a shared 4D latent space, unifying both tasks and modalities in a single framework. Specifically, we introduce a pure transformer architecture with 4D rotary position embeddings to process visual inputs of arbitrary resolutions and temporal durations. To ensure stable training, we introduce an adversarial-free training objective that combines perceptual and Gram matrix losses, achieving state-of-the-art reconstruction quality. By employing a progressive training curriculum, AToken gradually expands from single images, videos, and 3D, and supports both continuous and discrete latent tokens. AToken achieves 0.21 rFID with 82.2% ImageNet accuracy for images, 3.01 rFVD with 40.2% MSRVTT retrieval for videos, and 28.28 PSNR with 90.9% classification accuracy for 3D.. In downstream applications, AToken enables both visual generation tasks (e.g., image generation with continuous and discrete tokens, text-to-video generation, image-to-3D synthesis) and understanding tasks (e.g., multimodal LLMs), achieving competitive performance across all benchmarks. These results shed light on the next-generation multimodal AI systems built upon unified visual tokenization.




Legal text classification is a fundamental NLP task in the legal domain. Benchmark datasets in this area often exhibit a long-tail label distribution, where many labels are underrepresented, leading to poor model performance on rare classes. This paper proposes Selective Retrieval-Augmentation (SRA) as a solution to this problem. SRA focuses on augmenting samples belonging to low-frequency labels in the training set, preventing the introduction of noise for well-represented classes, and requires no changes to the model architecture. Retrieval is performed only from the training data to ensure there is no potential information leakage, removing the need for external corpora simultaneously. The proposed SRA method is tested on two legal text classification benchmark datasets with long-tail distributions: LEDGAR (single-label) and UNFAIR-ToS (multi-label). The results indicate that SRA attains higher micro-F1 and macro-F1 scores compared to all current LexGLUE baselines across both datasets, illustrating consistent improvements in long-tail legal text classification.
Target-oriented multimodal sentiment classification seeks to predict sentiment polarity for specific targets from image-text pairs. While existing works achieve competitive performance, they often over-rely on textual content and fail to consider dataset biases, in particular word-level contextual biases. This leads to spurious correlations between text features and output labels, impairing classification accuracy. In this paper, we introduce a novel counterfactual-enhanced debiasing framework to reduce such spurious correlations. Our framework incorporates a counterfactual data augmentation strategy that minimally alters sentiment-related causal features, generating detail-matched image-text samples to guide the model's attention toward content tied to sentiment. Furthermore, for learning robust features from counterfactual data and prompting model decisions, we introduce an adaptive debiasing contrastive learning mechanism, which effectively mitigates the influence of biased words. Experimental results on several benchmark datasets show that our proposed method outperforms state-of-the-art baselines.