Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Aug 24, 2025
Abstract:Multimodal representation learning has advanced rapidly with contrastive models such as CLIP, which align image-text pairs in a shared embedding space. However, these models face limitations: (1) they typically focus on image-text pairs, underutilizing the semantic relations across different pairs. (2) they directly match global embeddings without contextualization, overlooking the need for semantic alignment along specific subspaces or relational dimensions; and (3) they emphasize cross-modal contrast, with limited support for intra-modal consistency. To address these issues, we propose Relation-Conditioned Multimodal Learning RCML, a framework that learns multimodal representations under natural-language relation descriptions to guide both feature extraction and alignment. Our approach constructs many-to-many training pairs linked by semantic relations and introduces a relation-guided cross-attention mechanism that modulates multimodal representations under each relation context. The training objective combines inter-modal and intra-modal contrastive losses, encouraging consistency across both modalities and semantically related samples. Experiments on different datasets show that RCML consistently outperforms strong baselines on both retrieval and classification tasks, highlighting the effectiveness of leveraging semantic relations to guide multimodal representation learning.
Via

Aug 23, 2025
Abstract:Thematic investing aims to construct portfolios aligned with structural trends, yet selecting relevant stocks remains challenging due to overlapping sector boundaries and evolving market dynamics. To address this challenge, we construct the Thematic Representation Set (TRS), an extended dataset that begins with real-world thematic ETFs and expands upon them by incorporating industry classifications and financial news to overcome their coverage limitations. The final dataset contains both the explicit mapping of themes to their constituent stocks and the rich textual profiles for each. Building on this dataset, we introduce \textsc{THEME}, a hierarchical contrastive learning framework. By representing the textual profiles of themes and stocks as embeddings, \textsc{THEME} first leverages their hierarchical relationship to achieve semantic alignment. Subsequently, it refines these semantic embeddings through a temporal refinement stage that incorporates individual stock returns. The final stock representations are designed for effective retrieval of thematically aligned assets with strong return potential. Empirical results show that \textsc{THEME} outperforms strong baselines across multiple retrieval metrics and significantly improves performance in portfolio construction. By jointly modeling thematic relationships from text and market dynamics from returns, \textsc{THEME} provides a scalable and adaptive solution for navigating complex investment themes.
* Accepted at ACM International Conference on Information and Knowledge
Management (CIKM)
Via

Aug 11, 2025
Abstract:Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.
* 14 pages, 7 tables, 2 figures
Via

Aug 11, 2025
Abstract:Recent progress in large language models (LLMs) has leveraged their in-context learning (ICL) abilities to enable quick adaptation to unseen biomedical NLP tasks. By incorporating only a few input-output examples into prompts, LLMs can rapidly perform these new tasks. While the impact of these demonstrations on LLM performance has been extensively studied, most existing approaches prioritize representativeness over diversity when selecting examples from large corpora. To address this gap, we propose Dual-Div, a diversity-enhanced data-efficient framework for demonstration selection in biomedical ICL. Dual-Div employs a two-stage retrieval and ranking process: First, it identifies a limited set of candidate examples from a corpus by optimizing both representativeness and diversity (with optional annotation for unlabeled data). Second, it ranks these candidates against test queries to select the most relevant and non-redundant demonstrations. Evaluated on three biomedical NLP tasks (named entity recognition (NER), relation extraction (RE), and text classification (TC)) using LLaMA 3.1 and Qwen 2.5 for inference, along with three retrievers (BGE-Large, BMRetriever, MedCPT), Dual-Div consistently outperforms baselines-achieving up to 5% higher macro-F1 scores-while demonstrating robustness to prompt permutations and class imbalance. Our findings establish that diversity in initial retrieval is more critical than ranking-stage optimization, and limiting demonstrations to 3-5 examples maximizes performance efficiency.
Via

Aug 06, 2025
Abstract:Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost.
* 16 pages, 6 figures
Via

Aug 20, 2025
Abstract:Compression-based distances (CD) offer a flexible and domain-agnostic means of measuring similarity by identifying implicit information through redundancies between data objects. However, as similarity features are derived from the data, rather than defined as an input, it often proves difficult to align with the task at hand, particularly in complex clustering or classification settings. To address this issue, we introduce "context steering," a novel methodology that actively guides the feature-shaping process. Instead of passively accepting the emergent data structure (typically a hierarchy derived from clustering CDs), our approach "steers" the process by systematically analyzing how each object influences the relational context within a clustering framework. This process generates a custom-tailored embedding that isolates and amplifies class-distinctive information. We validate the capabilities of this strategy using Normalized Compression Distance (NCD) and Relative Compression Distance (NRC) with common hierarchical clustering, providing an effective alternative to common transductive methods. Experimental results across heterogeneous datasets-from text to real-world audio-validate the robustness and generality of context steering, marking a fundamental shift in their application: from merely discovering inherent data structures to actively shaping a feature space tailored to a specific objective.
Via

Aug 20, 2025
Abstract:Humans regularly navigate an overwhelming amount of information via text media, whether reading articles, browsing social media, or interacting with chatbots. Confusion naturally arises when new information conflicts with or exceeds a reader's comprehension or prior knowledge, posing a challenge for learning. In this study, we present a multimodal investigation of reading-induced confusion using EEG and eye tracking. We collected neural and gaze data from 11 adult participants as they read short paragraphs sampled from diverse, real-world sources. By isolating the N400 event-related potential (ERP), a well-established neural marker of semantic incongruence, and integrating behavioral markers from eye tracking, we provide a detailed analysis of the neural and behavioral correlates of confusion during naturalistic reading. Using machine learning, we show that multimodal (EEG + eye tracking) models improve classification accuracy by 4-22% over unimodal baselines, reaching an average weighted participant accuracy of 77.3% and a best accuracy of 89.6%. Our results highlight the dominance of the brain's temporal regions in these neural signatures of confusion, suggesting avenues for wearable, low-electrode brain-computer interfaces (BCI) for real-time monitoring. These findings lay the foundation for developing adaptive systems that dynamically detect and respond to user confusion, with potential applications in personalized learning, human-computer interaction, and accessibility.
Via

Aug 12, 2025
Abstract:Vision-Language Models (VLMs) have achieved remarkable success on multimodal tasks such as image-text retrieval and zero-shot classification, yet they can exhibit demographic biases even when explicit protected attributes are absent during training. In this work, we focus on automated glaucoma screening from retinal fundus images, a critical application given that glaucoma is a leading cause of irreversible blindness and disproportionately affects underserved populations. Building on a reweighting-based contrastive learning framework, we introduce an attribute-agnostic debiasing method that (i) infers proxy subgroups via unsupervised clustering of image-image embeddings, (ii) computes gradient-similarity weights between the CLIP-style multimodal loss and a SimCLR-style image-pair contrastive loss, and (iii) applies these weights in a joint, top-$k$ weighted objective to upweight underperforming clusters. This label-free approach adaptively targets the hardest examples, thereby reducing subgroup disparities. We evaluate our method on the Harvard FairVLMed glaucoma subset, reporting Equalized Odds Distance (EOD), Equalized Subgroup AUC (ES AUC), and Groupwise AUC to demonstrate equitable performance across inferred demographic subgroups.
* 3rd Workshop in Data Engineering in Medical Imaging (DEMI),
MICCAI-2025 Workshop
Via

Aug 19, 2025
Abstract:Advancements in diffusion-based foundation models have improved text-to-image generation, yet most efforts have been limited to low-resolution settings. As high-resolution image synthesis becomes increasingly essential for various applications, particularly in medical imaging domains, fine-tuning emerges as a crucial mechanism for adapting these powerful pre-trained models to task-specific requirements and data distributions. In this work, we present a systematic study, examining the impact of various fine-tuning techniques on image generation quality when scaling to high resolution 512x512 pixels. We benchmark a diverse set of fine-tuning methods, including full fine-tuning strategies and parameter-efficient fine-tuning (PEFT). We dissect how different fine-tuning methods influence key quality metrics, including Fr\'echet Inception Distance (FID), Vendi score, and prompt-image alignment. We also evaluate the utility of generated images in a downstream classification task under data-scarce conditions, demonstrating that specific fine-tuning strategies improve both generation fidelity and downstream performance when synthetic images are used for classifier training and evaluation on real images. Our code is accessible through the project website - https://tehraninasab.github.io/PixelUPressure/.
Via

Aug 19, 2025
Abstract:Explainable object recognition using vision-language models such as CLIP involves predicting accurate category labels supported by rationales that justify the decision-making process. Existing methods typically rely on prompt-based conditioning, which suffers from limitations in CLIP's text encoder and provides weak conditioning on explanatory structures. Additionally, prior datasets are often restricted to single, and frequently noisy, rationales that fail to capture the full diversity of discriminative image features. In this work, we introduce a multi-rationale explainable object recognition benchmark comprising datasets in which each image is annotated with multiple ground-truth rationales, along with evaluation metrics designed to offer a more comprehensive representation of the task. To overcome the limitations of previous approaches, we propose a contrastive conditional inference (CCI) framework that explicitly models the probabilistic relationships among image embeddings, category labels, and rationales. Without requiring any training, our framework enables more effective conditioning on rationales to predict accurate object categories. Our approach achieves state-of-the-art results on the multi-rationale explainable object recognition benchmark, including strong zero-shot performance, and sets a new standard for both classification accuracy and rationale quality. Together with the benchmark, this work provides a more complete framework for evaluating future models in explainable object recognition. The code will be made available online.
Via
