Text classification is the process of categorizing text documents into predefined categories or labels.
With the rapid proliferation of information across digital platforms, stance detection has emerged as a pivotal challenge in social media analysis. While most of the existing approaches focus solely on textual data, real-world social media content increasingly combines text with visual elements creating a need for advanced multimodal methods. To address this gap, we propose a multimodal stance detection framework that integrates textual and visual information through a hierarchical fusion approach. Our method first employs a Large Language Model to retrieve stance-relevant summaries from source text, while a domain-aware image caption generator interprets visual content in the context of the target topic. These modalities are then jointly modeled along with the reply text, through a specialized transformer module that captures interactions between the texts and images. The proposed modality fusion framework integrates diverse modalities to facilitate robust stance classification. We evaluate our approach on the MultiClimate dataset, a benchmark for climate change-related stance detection containing aligned video frames and transcripts. We achieve accuracy of 76.2%, precision of 76.3%, recall of 76.2% and F1-score of 76.2%, respectively, outperforming existing state-of-the-art approaches.
This study introduces KPoEM (Korean Poetry Emotion Mapping) , a novel dataset for computational emotion analysis in modern Korean poetry. Despite remarkable progress in text-based emotion classification using large language models, poetry-particularly Korean poetry-remains underexplored due to its figurative language and cultural specificity. We built a multi-label emotion dataset of 7,662 entries, including 7,007 line-level entries from 483 poems and 615 work-level entries, annotated with 44 fine-grained emotion categories from five influential Korean poets. A state-of-the-art Korean language model fine-tuned on this dataset significantly outperformed previous models, achieving 0.60 F1-micro compared to 0.34 from models trained on general corpora. The KPoEM model, trained through sequential fine-tuning-first on general corpora and then on the KPoEM dataset-demonstrates not only an enhanced ability to identify temporally and culturally specific emotional expressions, but also a strong capacity to preserve the core sentiments of modern Korean poetry. This study bridges computational methods and literary analysis, presenting new possibilities for the quantitative exploration of poetic emotions through structured data that faithfully retains the emotional and cultural nuances of Korean literature.
Financial news sentiment analysis is crucial for anticipating market movements. With the rise of AI techniques such as Large Language Models (LLMs), which demonstrate strong text understanding capabilities, there has been renewed interest in enhancing these systems. Existing methods, however, often struggle to capture the complex economic context of news and lack transparent reasoning, which undermines their reliability. We propose Analogy-Driven Financial Chain-of-Thought (AD-FCoT), a prompting framework that integrates analogical reasoning with chain-of-thought (CoT) prompting for sentiment prediction on historical financial news. AD-FCoT guides LLMs to draw parallels between new events and relevant historical scenarios with known outcomes, embedding these analogies into a structured, step-by-step reasoning chain. To our knowledge, this is among the first approaches to explicitly combine analogical examples with CoT reasoning in finance. Operating purely through prompting, AD-FCoT requires no additional training data or fine-tuning and leverages the model's internal financial knowledge to generate rationales that mirror human analytical reasoning. Experiments on thousands of news articles show that AD-FCoT outperforms strong baselines in sentiment classification accuracy and achieves substantially higher correlation with market returns. Its generated explanations also align with domain expertise, providing interpretable insights suitable for real-world financial analysis.
Background: Precise breast ultrasound (BUS) segmentation supports reliable measurement, quantitative analysis, and downstream classification, yet remains difficult for small or low-contrast lesions with fuzzy margins and speckle noise. Text prompts can add clinical context, but directly applying weakly localized text-image cues (e.g., CAM/CLIP-derived signals) tends to produce coarse, blob-like responses that smear boundaries unless additional mechanisms recover fine edges. Methods: We propose XBusNet, a novel dual-prompt, dual-branch multimodal model that combines image features with clinically grounded text. A global pathway based on a CLIP Vision Transformer encodes whole-image semantics conditioned on lesion size and location, while a local U-Net pathway emphasizes precise boundaries and is modulated by prompts that describe shape, margin, and Breast Imaging Reporting and Data System (BI-RADS) terms. Prompts are assembled automatically from structured metadata, requiring no manual clicks. We evaluate on the Breast Lesions USG (BLU) dataset using five-fold cross-validation. Primary metrics are Dice and Intersection over Union (IoU); we also conduct size-stratified analyses and ablations to assess the roles of the global and local paths and the text-driven modulation. Results: XBusNet achieves state-of-the-art performance on BLU, with mean Dice of 0.8765 and IoU of 0.8149, outperforming six strong baselines. Small lesions show the largest gains, with fewer missed regions and fewer spurious activations. Ablation studies show complementary contributions of global context, local boundary modeling, and prompt-based modulation. Conclusions: A dual-prompt, dual-branch multimodal design that merges global semantics with local precision yields accurate BUS segmentation masks and improves robustness for small, low-contrast lesions.
Verbal autopsy (VA) is a critical tool for estimating causes of death in resource-limited settings where medical certification is unavailable. This study presents LA-VA, a proof-of-concept pipeline that combines Large Language Models (LLMs) with traditional algorithmic approaches and embedding-based classification for improved cause-of-death prediction. Using the Population Health Metrics Research Consortium (PHMRC) dataset across three age categories (Adult: 7,580; Child: 1,960; Neonate: 2,438), we evaluate multiple approaches: GPT-5 predictions, LCVA baseline, text embeddings, and meta-learner ensembles. Our results demonstrate that GPT-5 achieves the highest individual performance with average test site accuracies of 48.6% (Adult), 50.5% (Child), and 53.5% (Neonate), outperforming traditional statistical machine learning baselines by 5-10%. Our findings suggest that simple off-the-shelf LLM-assisted approaches could substantially improve verbal autopsy accuracy, with important implications for global health surveillance in low-resource settings.
Encoder-only languages models are frequently used for a variety of standard machine learning tasks, including classification and retrieval. However, there has been a lack of recent research for encoder models, especially with respect to multilingual models. We introduce mmBERT, an encoder-only language model pretrained on 3T tokens of multilingual text in over 1800 languages. To build mmBERT we introduce several novel elements, including an inverse mask ratio schedule and an inverse temperature sampling ratio. We add over 1700 low-resource languages to the data mix only during the decay phase, showing that it boosts performance dramatically and maximizes the gains from the relatively small amount of training data. Despite only including these low-resource languages in the short decay phase we achieve similar classification performance to models like OpenAI's o3 and Google's Gemini 2.5 Pro. Overall, we show that mmBERT significantly outperforms the previous generation of models on classification and retrieval tasks -- on both high and low-resource languages.
We address the problem of data scarcity in harmful text classification for guardrailing applications and introduce GRAID (Geometric and Reflective AI-Driven Data Augmentation), a novel pipeline that leverages Large Language Models (LLMs) for dataset augmentation. GRAID consists of two stages: (i) generation of geometrically controlled examples using a constrained LLM, and (ii) augmentation through a multi-agentic reflective process that promotes stylistic diversity and uncovers edge cases. This combination enables both reliable coverage of the input space and nuanced exploration of harmful content. Using two benchmark data sets, we demonstrate that augmenting a harmful text classification dataset with GRAID leads to significant improvements in downstream guardrail model performance.
Despite its significance, Arabic, a linguistically rich and morphologically complex language, faces the challenge of being under-resourced. The scarcity of large annotated datasets hampers the development of accurate tools for subjectivity analysis in Arabic. Recent advances in deep learning and Transformers have proven highly effective for text classification in English and French. This paper proposes a new approach for subjectivity assessment in Arabic textual data. To address the dearth of specialized annotated datasets, we developed a comprehensive dataset, AraDhati+, by leveraging existing Arabic datasets and collections (ASTD, LABR, HARD, and SANAD). Subsequently, we fine-tuned state-of-the-art Arabic language models (XLM-RoBERTa, AraBERT, and ArabianGPT) on AraDhati+ for effective subjectivity classification. Furthermore, we experimented with an ensemble decision approach to harness the strengths of individual models. Our approach achieves a remarkable accuracy of 97.79\,\% for Arabic subjectivity classification. Results demonstrate the effectiveness of the proposed approach in addressing the challenges posed by limited resources in Arabic language processing.
Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt -- a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.
Qualitative analysis of open-ended survey responses is a commonly-used research method in the social sciences, but traditional coding approaches are often time-consuming and prone to inconsistency. Existing solutions from Natural Language Processing such as supervised classifiers, topic modeling techniques, and generative large language models have limited applicability in qualitative analysis, since they demand extensive labeled data, disrupt established qualitative workflows, and/or yield variable results. In this paper, we introduce a text embedding-based classification framework that requires only a handful of examples per category and fits well with standard qualitative workflows. When benchmarked against human analysis of a conceptual physics survey consisting of 2899 open-ended responses, our framework achieves a Cohen's Kappa ranging from 0.74 to 0.83 as compared to expert human coders in an exhaustive coding scheme. We further show how performance of this framework improves with fine-tuning of the text embedding model, and how the method can be used to audit previously-analyzed datasets. These findings demonstrate that text embedding-assisted coding can flexibly scale to thousands of responses without sacrificing interpretability, opening avenues for deductive qualitative analysis at scale.