Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
The retrieval-ranking paradigm has long dominated e-commerce search, but its reliance on query-item matching fundamentally misaligns with multi-stage cognitive decision processes of platform users. This misalignment introduces critical limitations: semantic gaps in complex queries, high decision costs due to cross-platform information foraging, and the absence of professional shopping guidance. To address these issues, we propose a Multi-Agent Cognitive Decision Framework (MACDF), which shifts the paradigm from passive retrieval to proactive decision support. Extensive offline evaluations demonstrate MACDF's significant improvements in recommendation accuracy and user satisfaction, particularly for complex queries involving negation, multi-constraint, or reasoning demands. Online A/B testing on JD search platform confirms its practical efficacy. This work highlights the transformative potential of multi-agent cognitive systems in redefining e-commerce search.
Large language models (LLMs) produce outputs with varying levels of uncertainty, and, just as often, varying levels of correctness; making their practical reliability far from guaranteed. To quantify this uncertainty, we systematically evaluate four approaches for confidence estimation in LLM outputs: VCE, MSP, Sample Consistency, and CoCoA (Vashurin et al., 2025). For the evaluation of the approaches, we conduct experiments on four question-answering tasks using a state-of-the-art open-source LLM. Our results show that each uncertainty metric captures a different facet of model confidence and that the hybrid CoCoA approach yields the best reliability overall, improving both calibration and discrimination of correct answers. We discuss the trade-offs of each method and provide recommendations for selecting uncertainty measures in LLM applications.
We provide an inferential framework to assess variable importance for heterogeneous treatment effects. This assessment is especially useful in high-risk domains such as medicine, where decision makers hesitate to rely on black-box treatment recommendation algorithms. The variable importance measures we consider are local in that they may differ across individuals, while the inference is global in that it tests whether a given variable is important for any individual. Our approach builds on recent developments in semiparametric theory for function-valued parameters, and is valid even when statistical machine learning algorithms are employed to quantify treatment effect heterogeneity. We demonstrate the applicability of our method to infectious disease prevention strategies.
In networked environments, users frequently share recommendations about content, products, services, and courses of action with others. The extent to which such recommendations are successful and adopted is highly contextual, dependent on the characteristics of the sender, recipient, their relationship, the recommended item, and the medium, which makes peer influence probabilities highly heterogeneous. Accurate estimation of these probabilities is key to understanding information diffusion processes and to improving the effectiveness of viral marketing strategies. However, learning these probabilities from data is challenging; static data may capture correlations between peer recommendations and peer actions but fails to reveal influence relationships. Online learning algorithms can learn these probabilities from interventions but either waste resources by learning from random exploration or optimize for rewards, thus favoring exploration of the space with higher influence probabilities. In this work, we study learning peer influence probabilities under a contextual linear bandit framework. We show that a fundamental trade-off can arise between regret minimization and estimation error, characterize all achievable rate pairs, and propose an uncertainty-guided exploration algorithm that, by tuning a parameter, attains any pair within this trade-off. Our experiments on semi-synthetic network datasets show the advantages of our method over static methods and contextual bandits that ignore this trade-off.
Current medical practice depends on standardized treatment frameworks and empirical methodologies that neglect individual patient variations, leading to suboptimal health outcomes. We develop a comprehensive system integrating Large Language Models (LLMs), Conditional Tabular Generative Adversarial Networks (CTGAN), T-learner counterfactual models, and contextual bandit approaches to provide customized, data-informed clinical recommendations. The approach utilizes LLMs to process unstructured medical narratives into structured datasets (93.2% accuracy), uses CTGANs to produce realistic synthetic patient data (55% accuracy via two-sample verification), deploys T-learners to forecast patient-specific treatment responses (84.3% accuracy), and integrates prior-informed contextual bandits to enhance online therapeutic selection by effectively balancing exploration of new possibilities with exploitation of existing knowledge. Testing on stage III colon cancer datasets revealed that our KernelUCB approach obtained 0.60-0.61 average reward scores across 5,000 rounds, exceeding other reference methods. This comprehensive system overcomes cold-start limitations in online learning environments, improves computational effectiveness, and constitutes notable progress toward individualized medicine adapted to specific patient characteristics.
The integration of large language models (LLMs) into recommendation systems has revealed promising potential through their capacity to extract world knowledge for enhanced reasoning capabilities. However, current methodologies that adopt static schema-based prompting mechanisms encounter significant limitations: (1) they employ universal template structures that neglect the multi-faceted nature of user preference diversity; (2) they implement superficial alignment between semantic knowledge representations and behavioral feature spaces without achieving comprehensive latent space integration. To address these challenges, we introduce CoCo, an end-to-end framework that dynamically constructs user-specific contextual knowledge embeddings through a dual-mechanism approach. Our method realizes profound integration of semantic and behavioral latent dimensions via adaptive knowledge fusion and contradiction resolution modules. Experimental evaluations across diverse benchmark datasets and an enterprise-level e-commerce platform demonstrate CoCo's superiority, achieving a maximum 8.58% improvement over seven cutting-edge methods in recommendation accuracy. The framework's deployment on a production advertising system resulted in a 1.91% sales growth, validating its practical effectiveness. With its modular design and model-agnostic architecture, CoCo provides a versatile solution for next-generation recommendation systems requiring both knowledge-enhanced reasoning and personalized adaptation.
In large scale recommendation systems like the LinkedIn Feed, the retrieval stage is critical for narrowing hundreds of millions of potential candidates to a manageable subset for ranking. LinkedIn's Feed serves suggested content from outside of the member's network (based on the member's topical interests), where 2000 candidates are retrieved from a pool of hundreds of millions candidate with a latency budget of a few milliseconds and inbound QPS of several thousand per second. This paper presents a novel retrieval approach that fine-tunes a large causal language model (Meta's LLaMA 3) as a dual encoder to generate high quality embeddings for both users (members) and content (items), using only textual input. We describe the end to end pipeline, including prompt design for embedding generation, techniques for fine-tuning at LinkedIn's scale, and infrastructure for low latency, cost effective online serving. We share our findings on how quantizing numerical features in the prompt enables the information to get properly encoded in the embedding, facilitating greater alignment between the retrieval and ranking layer. The system was evaluated using offline metrics and an online A/B test, which showed substantial improvements in member engagement. We observed significant gains among newer members, who often lack strong network connections, indicating that high-quality suggested content aids retention. This work demonstrates how generative language models can be effectively adapted for real time, high throughput retrieval in industrial applications.
In recent years, various approaches have been proposed to leverage large language models (LLMs) for incorporating textual information about items into recommender systems. Existing methods primarily focus on either fine-tuning LLMs to generate recommendations or integrating LLM-based embeddings into downstream models. In this work, we follow the latter direction and propose \textbf{TextGCN}, which applies parameter-free graph convolution layers directly over LLM-based item-title embeddings, instead of learning ID-based embeddings as in traditional methods. By combining language semantics with graph message passing, this architecture achieves state-of-the-art zero-shot performance, significantly outperforming prior approaches. Furthermore, we introduce \textbf{TextGCN-MLP}, which extends TextGCN with a trainable multilayer perceptron trained using a contrastive loss, achieving state-of-the-art in-domain performance on recommendation benchmarks. However, the zero-shot performance of TextGCN-MLP remains lower than that of TextGCN, highlighting the trade-off between in-domain specialization and zero-shot generalization. We release our code on github at \href{https://github.com/ChernovAndrey/TFCE}{github.com/ChernovAndrey/TFCE}.




Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving external documents. As an emerging form of RAG, parametric retrieval-augmented generation (PRAG) encodes documents as model parameters (i.e., LoRA modules) and injects these representations into the model during inference, enabling interaction between the LLM and documents at parametric level. Compared with directly placing documents in the input context, PRAG is more efficient and has the potential to offer deeper model-document interaction. Despite its growing attention, the mechanism underlying parametric injection remains poorly understood. In this work, we present a systematic study of PRAG to clarify the role of parametric injection, showing that parameterized documents capture only partial semantic information of documents, and relying on them alone yields inferior performance compared to interaction at text level. However, these parametric representations encode high-level document information that can enhance the model's understanding of documents within the input context. When combined parameterized documents with textual documents, the model can leverage relevant information more effectively and become more robust to noisy inputs, achieving better performance than either source alone. We recommend jointly using parameterized and textual documents and advocate for increasing the information content of parametric representations to advance PRAG.




When users are dissatisfied with recommendations from a recommender system, they often lack fine-grained controls for changing them. Large language models (LLMs) offer a solution by allowing users to guide their recommendations through natural language requests (e.g., "I want to see respectful posts with a different perspective than mine"). We propose a method, CTRL-Rec, that allows for natural language control of traditional recommender systems in real-time with computational efficiency. Specifically, at training time, we use an LLM to simulate whether users would approve of items based on their language requests, and we train embedding models that approximate such simulated judgments. We then integrate these user-request-based predictions into the standard weighting of signals that traditional recommender systems optimize. At deployment time, we require only a single LLM embedding computation per user request, allowing for real-time control of recommendations. In experiments with the MovieLens dataset, our method consistently allows for fine-grained control across a diversity of requests. In a study with 19 Letterboxd users, we find that CTRL-Rec was positively received by users and significantly enhanced users' sense of control and satisfaction with recommendations compared to traditional controls.