Topic:Stock Price Prediction
What is Stock Price Prediction? Stock Price Prediction is the task of forecasting future stock prices based on historical data and various market indicators. It involves using statistical models and machine learning algorithms to analyze financial data and make predictions about the future performance of a stock. The goal of stock price prediction is to help investors make informed investment decisions by providing a forecast of future stock prices.
Papers and Code
Jan 02, 2025
Abstract:Predicting Bitcoin price remains a challenging problem due to the high volatility and complex non-linear dynamics of cryptocurrency markets. Traditional time-series models, such as ARIMA and GARCH, and recurrent neural networks, like LSTMs, have been widely applied to this task but struggle to capture the regime shifts and long-range dependencies inherent in the data. In this work, we propose CryptoMamba, a novel Mamba-based State Space Model (SSM) architecture designed to effectively capture long-range dependencies in financial time-series data. Our experiments show that CryptoMamba not only provides more accurate predictions but also offers enhanced generalizability across different market conditions, surpassing the limitations of previous models. Coupled with trading algorithms for real-world scenarios, CryptoMamba demonstrates its practical utility by translating accurate forecasts into financial outcomes. Our findings signal a huge advantage for SSMs in stock and cryptocurrency price forecasting tasks.
Via

Dec 29, 2024
Abstract:The financial industry is increasingly seeking robust methods to address the challenges posed by data scarcity and low signal-to-noise ratios, which limit the application of deep learning techniques in stock market analysis. This paper presents two innovative generative model-based approaches to synthesize stock data, specifically tailored for different scenarios within the A-share market in China. The first method, a sector-based synthesis approach, enhances the signal-to-noise ratio of stock data by classifying the characteristics of stocks from various sectors in China's A-share market. This method employs an Approximate Non-Local Total Variation algorithm to smooth the generated data, a bandpass filtering method based on Fourier Transform to eliminate noise, and Denoising Diffusion Implicit Models to accelerate sampling speed. The second method, a recursive stock data synthesis approach based on pattern recognition, is designed to synthesize data for stocks with short listing periods and limited comparable companies. It leverages pattern recognition techniques and Markov models to learn and generate variable-length stock sequences, while introducing a sub-time-level data augmentation method to alleviate data scarcity issues.We validate the effectiveness of these methods through extensive experiments on various datasets, including those from the main board, STAR Market, Growth Enterprise Market Board, Beijing Stock Exchange, NASDAQ, NYSE, and AMEX. The results demonstrate that our synthesized data not only improve the performance of predictive models but also enhance the signal-to-noise ratio of individual stock signals in price trading strategies. Furthermore, the introduction of sub-time-level data significantly improves the quality of synthesized data.
Via

Oct 29, 2024
Abstract:Recently, deep learning in stock prediction has become an important branch. Image-based methods show potential by capturing complex visual patterns and spatial correlations, offering advantages in interpretability over time series models. However, image-based approaches are more prone to overfitting, hindering robust predictive performance. To improve accuracy, this paper proposes a novel method, named Sequence-based Multi-scale Fusion Regression Convolutional Neural Network (SMSFR-CNN), for predicting stock price movements in the China A-share market. By utilizing CNN to learn sequential features and combining them with image features, we improve the accuracy of stock trend prediction on the A-share market stock dataset. This approach reduces the search space for image features, stabilizes, and accelerates the training process. Extensive comparative experiments on 4,454 A-share stocks show that the model achieves a 61.15% positive predictive value and a 63.37% negative predictive value for the next 5 days, resulting in a total profit of 165.09%.
* 32 pages, 5 figures, 5 tables
Via

Dec 09, 2024
Abstract:This paper introduces a novel approach to stock data analysis by employing a Hierarchical Graph Neural Network (HGNN) model that captures multi-level information and relational structures in the stock market. The HGNN model integrates stock relationship data and hierarchical attributes to predict stock types effectively. The paper discusses the construction of a stock industry relationship graph and the extraction of temporal information from historical price sequences. It also highlights the design of a graph convolution operation and a temporal attention aggregator to model the macro market state. The integration of these features results in a comprehensive stock prediction model that addresses the challenges of utilizing stock relationship data and modeling hierarchical attributes in the stock market.
Via

Dec 13, 2024
Abstract:In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
* KDD 2024 Workshop on Machine Learning in Finance
Via

Nov 02, 2024
Abstract:Predicting financial markets and stock price movements requires analyzing a company's performance, historic price movements, industry-specific events alongside the influence of human factors such as social media and press coverage. We assume that financial reports (such as income statements, balance sheets, and cash flow statements), historical price data, and recent news articles can collectively represent aforementioned factors. We combine financial data in tabular format with textual news articles and employ pre-trained Large Language Models (LLMs) to predict market movements. Recent research in LLMs has demonstrated that they are able to perform both tabular and text classification tasks, making them our primary model to classify the multi-modal data. We utilize retrieval augmentation techniques to retrieve and attach relevant chunks of news articles to financial metrics related to a company and prompt the LLMs in zero, two, and four-shot settings. Our dataset contains news articles collected from different sources, historic stock price, and financial report data for 20 companies with the highest trading volume across different industries in the stock market. We utilized recently released language models for our LLM-based classifier, including GPT- 3 and 4, and LLaMA- 2 and 3 models. We introduce an LLM-based classifier capable of performing classification tasks using combination of tabular (structured) and textual (unstructured) data. By using this model, we predicted the movement of a given stock's price in our dataset with a weighted F1-score of 58.5% and 59.1% and Matthews Correlation Coefficient of 0.175 for both 3-month and 6-month periods.
* 9 pages, 5 figures
Via

Oct 04, 2024
Abstract:This study evaluates the effectiveness of a Mixture of Experts (MoE) model for stock price prediction by comparing it to a Recurrent Neural Network (RNN) and a linear regression model. The MoE framework combines an RNN for volatile stocks and a linear model for stable stocks, dynamically adjusting the weight of each model through a gating network. Results indicate that the MoE approach significantly improves predictive accuracy across different volatility profiles. The RNN effectively captures non-linear patterns for volatile companies but tends to overfit stable data, whereas the linear model performs well for predictable trends. The MoE model's adaptability allows it to outperform each individual model, reducing errors such as Mean Squared Error (MSE) and Mean Absolute Error (MAE). Future work should focus on enhancing the gating mechanism and validating the model with real-world datasets to optimize its practical applicability.
Via

Nov 10, 2024
Abstract:There are two issues in news-driven multi-stock movement prediction tasks that are not well solved in the existing works. On the one hand, "relation discovery" is a pivotal part when leveraging the price information of other stocks to achieve accurate stock movement prediction. Given that stock relations are often unidirectional, such as the "supplier-consumer" relationship, causal relations are more appropriate to capture the impact between stocks. On the other hand, there is substantial noise existing in the news data leading to extracting effective information with difficulty. With these two issues in mind, we propose a novel framework called CausalStock for news-driven multi-stock movement prediction, which discovers the temporal causal relations between stocks. We design a lag-dependent temporal causal discovery mechanism to model the temporal causal graph distribution. Then a Functional Causal Model is employed to encapsulate the discovered causal relations and predict the stock movements. Additionally, we propose a Denoised News Encoder by taking advantage of the excellent text evaluation ability of large language models (LLMs) to extract useful information from massive news data. The experiment results show that CausalStock outperforms the strong baselines for both news-driven multi-stock movement prediction and multi-stock movement prediction tasks on six real-world datasets collected from the US, China, Japan, and UK markets. Moreover, getting benefit from the causal relations, CausalStock could offer a clear prediction mechanism with good explainability.
* Accepted by NeurIPS 2024
Via

Oct 17, 2024
Abstract:Time series forecasts are often influenced by exogenous contextual features in addition to their corresponding history. For example, in financial settings, it is hard to accurately predict a stock price without considering public sentiments and policy decisions in the form of news articles, tweets, etc. Though this is common knowledge, the current state-of-the-art (SOTA) forecasting models fail to incorporate such contextual information, owing to its heterogeneity and multimodal nature. To address this, we introduce ContextFormer, a novel plug-and-play method to surgically integrate multimodal contextual information into existing pre-trained forecasting models. ContextFormer effectively distills forecast-specific information from rich multimodal contexts, including categorical, continuous, time-varying, and even textual information, to significantly enhance the performance of existing base forecasters. ContextFormer outperforms SOTA forecasting models by up to 30% on a range of real-world datasets spanning energy, traffic, environmental, and financial domains.
Via

Sep 24, 2024
Abstract:Literature highlighted that financial time series data pose significant challenges for accurate stock price prediction, because these data are characterized by noise and susceptibility to news; traditional statistical methodologies made assumptions, such as linearity and normality, which are not suitable for the non-linear nature of financial time series; on the other hand, machine learning methodologies are able to capture non linear relationship in the data. To date, neural network is considered the main machine learning tool for the financial prices prediction. Transfer Learning, as a method aimed at transferring knowledge from source tasks to target tasks, can represent a very useful methodological tool for getting better financial prediction capability. Current reviews on the above body of knowledge are mainly focused on neural network architectures, for financial prediction, with very little emphasis on the transfer learning methodology; thus, this paper is aimed at going deeper on this topic by developing a systematic review with respect to application of Transfer Learning for financial market predictions and to challenges/potential future directions of the transfer learning methodologies for stock market predictions.
* 43 pages, 5 tables, 1 figure
Via
