Abstract:This work focuses on Hierarchical Inference (HI) in edge intelligence systems, where a compact Local-ML model on an end-device works in conjunction with a high-accuracy Remote-ML model on an edge-server. HI aims to reduce latency, improve accuracy, and lower bandwidth usage by first using the Local-ML model for inference and offloading to the Remote-ML only when the local inference is likely incorrect. A critical challenge in HI is estimating the likelihood of the local inference being incorrect, especially when data distributions and offloading costs change over time -- a problem we term Hierarchical Inference Learning (HIL). We introduce a novel approach to HIL by modeling the probability of correct inference by the Local-ML as an increasing function of the model's confidence measure, a structure motivated by empirical observations but previously unexploited. We propose two policies, HI-LCB and HI-LCB-lite, based on the Upper Confidence Bound (UCB) framework. We demonstrate that both policies achieve order-optimal regret of $O(\log T)$, a significant improvement over existing HIL policies with $O(T^{2/3})$ regret guarantees. Notably, HI-LCB-lite has an $O(1)$ per-sample computational complexity, making it well-suited for deployment on devices with severe resource limitations. Simulations using real-world datasets confirm that our policies outperform existing state-of-the-art HIL methods.
Abstract:Spontaneous or conversational multilingual speech presents many challenges for state-of-the-art automatic speech recognition (ASR) systems. In this work, we present a new technique AMPS that augments a multilingual multimodal ASR system with paraphrase-based supervision for improved conversational ASR in multiple languages, including Hindi, Marathi, Malayalam, Kannada, and Nyanja. We use paraphrases of the reference transcriptions as additional supervision while training the multimodal ASR model and selectively invoke this paraphrase objective for utterances with poor ASR performance. Using AMPS with a state-of-the-art multimodal model SeamlessM4T, we obtain significant relative reductions in word error rates (WERs) of up to 5%. We present detailed analyses of our system using both objective and human evaluation metrics.
Abstract:Time series forecasts are often influenced by exogenous contextual features in addition to their corresponding history. For example, in financial settings, it is hard to accurately predict a stock price without considering public sentiments and policy decisions in the form of news articles, tweets, etc. Though this is common knowledge, the current state-of-the-art (SOTA) forecasting models fail to incorporate such contextual information, owing to its heterogeneity and multimodal nature. To address this, we introduce ContextFormer, a novel plug-and-play method to surgically integrate multimodal contextual information into existing pre-trained forecasting models. ContextFormer effectively distills forecast-specific information from rich multimodal contexts, including categorical, continuous, time-varying, and even textual information, to significantly enhance the performance of existing base forecasters. ContextFormer outperforms SOTA forecasting models by up to 30% on a range of real-world datasets spanning energy, traffic, environmental, and financial domains.
Abstract:Automatic speech recognition (ASR) for low-resource languages remains a challenge due to the scarcity of labeled training data. Parameter-efficient fine-tuning and text-only adaptation are two popular methods that have been used to address such low-resource settings. In this work, we investigate how these techniques can be effectively combined using a multilingual multimodal model like SeamlessM4T. Multimodal models are able to leverage unlabeled text via text-only adaptation with further parameter-efficient ASR fine-tuning, thus boosting ASR performance. We also show cross-lingual transfer from a high-resource language, achieving up to a relative 17% WER reduction over a baseline in a zero-shot setting without any labeled speech.