Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Controllable video generation has emerged as a versatile tool for autonomous driving, enabling realistic synthesis of traffic scenarios. However, existing methods depend on control signals at inference time to guide the generative model towards temporally consistent generation of dynamic objects, limiting their utility as scalable and generalizable data engines. In this work, we propose Localized Semantic Alignment (LSA), a simple yet effective framework for fine-tuning pre-trained video generation models. LSA enhances temporal consistency by aligning semantic features between ground-truth and generated video clips. Specifically, we compare the output of an off-the-shelf feature extraction model between the ground-truth and generated video clips localized around dynamic objects inducing a semantic feature consistency loss. We fine-tune the base model by combining this loss with the standard diffusion loss. The model fine-tuned for a single epoch with our novel loss outperforms the baselines in common video generation evaluation metrics. To further test the temporal consistency in generated videos we adapt two additional metrics from object detection task, namely mAP and mIoU. Extensive experiments on nuScenes and KITTI datasets show the effectiveness of our approach in enhancing temporal consistency in video generation without the need for external control signals during inference and any computational overheads.
This data article presents a dataset of 11,884 labeled images documenting a simulated blood extraction (phlebotomy) procedure performed on a training arm. Images were extracted from high-definition videos recorded under controlled conditions and curated to reduce redundancy using Structural Similarity Index Measure (SSIM) filtering. An automated face-anonymization step was applied to all videos prior to frame selection. Each image contains polygon annotations for five medically relevant classes: syringe, rubber band, disinfectant wipe, gloves, and training arm. The annotations were exported in a segmentation format compatible with modern object detection frameworks (e.g., YOLOv8), ensuring broad usability. This dataset is partitioned into training (70%), validation (15%), and test (15%) subsets and is designed to advance research in medical training automation and human-object interaction. It enables multiple applications, including phlebotomy tool detection, procedural step recognition, workflow analysis, conformance checking, and the development of educational systems that provide structured feedback to medical trainees. The data and accompanying label files are publicly available on Zenodo.
We introduce IndustryShapes, a new RGB-D benchmark dataset of industrial tools and components, designed for both instance-level and novel object 6D pose estimation approaches. The dataset provides a realistic and application-relevant testbed for benchmarking these methods in the context of industrial robotics bridging the gap between lab-based research and deployment in real-world manufacturing scenarios. Unlike many previous datasets that focus on household or consumer products or use synthetic, clean tabletop datasets, or objects captured solely in controlled lab environments, IndustryShapes introduces five new object types with challenging properties, also captured in realistic industrial assembly settings. The dataset has diverse complexity, from simple to more challenging scenes, with single and multiple objects, including scenes with multiple instances of the same object and it is organized in two parts: the classic set and the extended set. The classic set includes a total of 4,6k images and 6k annotated poses. The extended set introduces additional data modalities to support the evaluation of model-free and sequence-based approaches. To the best of our knowledge, IndustryShapes is the first dataset to offer RGB-D static onboarding sequences. We further evaluate the dataset on a representative set of state-of-the art methods for instance-based and novel object 6D pose estimation, including also object detection, segmentation, showing that there is room for improvement in this domain. The dataset page can be found in https://pose-lab.github.io/IndustryShapes.
Pipeline integrity is critical to industrial safety and environmental protection, with Magnetic Flux Leakage (MFL) detection being a primary non-destructive testing technology. Despite the promise of deep learning for automating MFL interpretation, progress toward reliable models has been constrained by the absence of a large-scale public dataset and benchmark, making fair comparison and reproducible evaluation difficult. We introduce \textbf{PipeMFL-240K}, a large-scale, meticulously annotated dataset and benchmark for complex object detection in pipeline MFL pseudo-color images. PipeMFL-240K reflects real-world inspection complexity and poses several unique challenges: (i) an extremely long-tailed distribution over \textbf{12} categories, (ii) a high prevalence of tiny objects that often comprise only a handful of pixels, and (iii) substantial intra-class variability. The dataset contains \textbf{240,320} images and \textbf{191,530} high-quality bounding-box annotations, collected from 11 pipelines spanning approximately \textbf{1,480} km. Extensive experiments are conducted with state-of-the-art object detectors to establish baselines. Results show that modern detectors still struggle with the intrinsic properties of MFL data, highlighting considerable headroom for improvement, while PipeMFL-240K provides a reliable and challenging testbed to drive future research. As the first public dataset and the first benchmark of this scale and scope for pipeline MFL inspection, it provides a critical foundation for efficient pipeline diagnostics as well as maintenance planning and is expected to accelerate algorithmic innovation and reproducible research in MFL-based pipeline integrity assessment.
Large language models are increasingly deployed as *deep agents* that plan, maintain persistent state, and invoke external tools, shifting safety failures from unsafe text to unsafe *trajectories*. We introduce **AgentFence**, an architecture-centric security evaluation that defines 14 trust-boundary attack classes spanning planning, memory, retrieval, tool use, and delegation, and detects failures via *trace-auditable conversation breaks* (unauthorized or unsafe tool use, wrong-principal actions, state/objective integrity violations, and attack-linked deviations). Holding the base model fixed, we evaluate eight agent archetypes under persistent multi-turn interaction and observe substantial architectural variation in mean security break rate (MSBR), ranging from $0.29 \pm 0.04$ (LangGraph) to $0.51 \pm 0.07$ (AutoGPT). The highest-risk classes are operational: Denial-of-Wallet ($0.62 \pm 0.08$), Authorization Confusion ($0.54 \pm 0.10$), Retrieval Poisoning ($0.47 \pm 0.09$), and Planning Manipulation ($0.44 \pm 0.11$), while prompt-centric classes remain below $0.20$ under standard settings. Breaks are dominated by boundary violations (SIV 31%, WPA 27%, UTI+UTA 24%, ATD 18%), and authorization confusion correlates with objective and tool hijacking ($ρ\approx 0.63$ and $ρ\approx 0.58$). AgentFence reframes agent security around what matters operationally: whether an agent stays within its goal and authority envelope over time.
In industry, defect detection is crucial for quality control. Non-destructive testing (NDT) methods are preferred as they do not influence the functionality of the object while inspecting. Automated data evaluation for automated defect detection is a growing field of research. In particular, machine learning approaches show promising results. To provide training data in sufficient amount and quality, synthetic data can be used. Rule-based approaches enable synthetic data generation in a controllable environment. Therefore, a digital twin of the inspected object including synthetic defects is needed. We present parametric methods to model 3d mesh objects of various defect types that can then be added to the object geometry to obtain synthetic defective objects. The models are motivated by common defects in metal casting but can be transferred to other machining procedures that produce similar defect shapes. Synthetic data resembling the real inspection data can then be created by using a physically based Monte Carlo simulation of the respective testing method. Using our defect models, a variable and arbitrarily large synthetic data set can be generated with the possibility to include rarely occurring defects in sufficient quantity. Pixel-perfect annotation can be created in parallel. As an example, we will use visual surface inspection, but the procedure can be applied in combination with simulations for any other NDT method.
LiDAR-based 3D object detectors often struggle to detect far-field objects due to the sparsity of point clouds at long ranges, which limits the availability of reliable geometric cues. To address this, prior approaches augment LiDAR data with depth-completed virtual points derived from RGB images; however, directly incorporating all virtual points leads to increased computational cost and introduces challenges in effectively fusing real and virtual information. We present Point Virtual Transformer (PointViT), a transformer-based 3D object detection framework that jointly reasons over raw LiDAR points and selectively sampled virtual points. The framework examines multiple fusion strategies, ranging from early point-level fusion to BEV-based gated fusion, and analyses their trade-offs in terms of accuracy and efficiency. The fused point cloud is voxelized and encoded using sparse convolutions to form a BEV representation, from which a compact set of high-confidence object queries is initialised and refined through a transformer-based context aggregation module. Experiments on the KITTI benchmark report 91.16% 3D AP, 95.94% BEV AP, and 99.36% AP on the KITTI 2D detection benchmark for the Car class.
Deploying trustworthy AI in open-world environments faces a dual challenge: the necessity for robust Out-of-Distribution (OOD) detection to ensure system safety, and the demand for flexible machine unlearning to satisfy privacy compliance and model rectification. However, this objective encounters a fundamental geometric contradiction: current OOD detectors rely on a static and compact data manifold, whereas traditional classification-oriented unlearning methods disrupt this delicate structure, leading to a catastrophic loss of the model's capability to discriminate anomalies while erasing target classes. To resolve this dilemma, we first define the problem of boundary-preserving class unlearning and propose a pivotal conceptual shift: in the context of OOD detection, effective unlearning is mathematically equivalent to transforming the target class into OOD samples. Based on this, we propose the TFER (Total Free Energy Repulsion) framework. Inspired by the free energy principle, TFER constructs a novel Push-Pull game mechanism: it anchors retained classes within a low-energy ID manifold through a pull mechanism, while actively expelling forgotten classes to high-energy OOD regions using a free energy repulsion force. This approach is implemented via parameter-efficient fine-tuning, circumventing the prohibitive cost of full retraining. Extensive experiments demonstrate that TFER achieves precise unlearning while maximally preserving the model's discriminative performance on remaining classes and external OOD data. More importantly, our study reveals that the unique Push-Pull equilibrium of TFER endows the model with inherent structural stability, allowing it to effectively resist catastrophic forgetting without complex additional constraints, thereby demonstrating exceptional potential in continual unlearning tasks.
Open-vocabulary semantic segmentation (OVSS) extends traditional closed-set segmentation by enabling pixel-wise annotation for both seen and unseen categories using arbitrary textual descriptions. While existing methods leverage vision-language models (VLMs) like CLIP, their reliance on image-level pretraining often results in imprecise spatial alignment, leading to mismatched segmentations in ambiguous or cluttered scenes. However, most existing approaches lack strong object priors and region-level constraints, which can lead to object hallucination or missed detections, further degrading performance. To address these challenges, we propose LoGoSeg, an efficient single-stage framework that integrates three key innovations: (i) an object existence prior that dynamically weights relevant categories through global image-text similarity, effectively reducing hallucinations; (ii) a region-aware alignment module that establishes precise region-level visual-textual correspondences; and (iii) a dual-stream fusion mechanism that optimally combines local structural information with global semantic context. Unlike prior works, LoGoSeg eliminates the need for external mask proposals, additional backbones, or extra datasets, ensuring efficiency. Extensive experiments on six benchmarks (A-847, PC-459, A-150, PC-59, PAS-20, and PAS-20b) demonstrate its competitive performance and strong generalization in open-vocabulary settings.
Boundary detection of irregular and translucent objects is an important problem with applications in medical imaging, environmental monitoring and manufacturing, where many of these applications are plagued with scarce labeled data and low in situ computational resources. While recent image segmentation studies focus on segmentation mask alignment with ground-truth, the task of boundary detection remains understudied, especially in the low data regime. In this work, we present a lightweight discrete diffusion contour refinement pipeline for robust boundary detection in the low data regime. We use a Convolutional Neural Network(CNN) architecture with self-attention layers as the core of our pipeline, and condition on a segmentation mask, iteratively denoising a sparse contour representation. We introduce multiple novel adaptations for improved low-data efficacy and inference efficiency, including using a simplified diffusion process, a customized model architecture, and minimal post processing to produce a dense, isolated contour given a dataset of size <500 training images. Our method outperforms several SOTA baselines on the medical imaging dataset KVASIR, is competitive on HAM10K and our custom wildfire dataset, Smoke, while improving inference framerate by 3.5X.