Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
The analysis of complex building time-series for actionable insights and recommendations remains challenging due to the nonlinear and multi-scale characteristics of energy data. To address this, we propose a framework that fine-tunes visual language large models (VLLMs) on 3D graphical representations of the data. The approach converts 1D time-series into 3D representations using continuous wavelet transforms (CWTs) and recurrence plots (RPs), which capture temporal dynamics and localize frequency anomalies. These 3D encodings enable VLLMs to visually interpret energy-consumption patterns, detect anomalies, and provide recommendations for energy efficiency. We demonstrate the framework on real-world building-energy datasets, where fine-tuned VLLMs successfully monitor building states, identify recurring anomalies, and generate optimization recommendations. Quantitatively, the Idefics-7B VLLM achieves validation losses of 0.0952 with CWTs and 0.1064 with RPs on the University of Sharjah energy dataset, outperforming direct fine-tuning on raw time-series data (0.1176) for anomaly detection. This work bridges time-series analysis and visualization, providing a scalable and interpretable framework for energy analytics.
Time Series Analysis is widely used in various real-world applications such as weather forecasting, financial fraud detection, imputation for missing data in IoT systems, and classification for action recognization. Mixture-of-Experts (MoE), as a powerful architecture, though demonstrating effectiveness in NLP, still falls short in adapting to versatile tasks in time series analytics due to its task-agnostic router and the lack of capability in modeling channel correlations. In this study, we propose a novel, general MoE-based time series framework called PatchMoE to support the intricate ``knowledge'' utilization for distinct tasks, thus task-aware. Based on the observation that hierarchical representations often vary across tasks, e.g., forecasting vs. classification, we propose a Recurrent Noisy Gating to utilize the hierarchical information in routing, thus obtaining task-sepcific capability. And the routing strategy is operated on time series tokens in both temporal and channel dimensions, and encouraged by a meticulously designed Temporal \& Channel Load Balancing Loss to model the intricate temporal and channel correlations. Comprehensive experiments on five downstream tasks demonstrate the state-of-the-art performance of PatchMoE.
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model
Temporal non-stationarity, the phenomenon that time series distributions change over time, poses fundamental challenges to reliable time series forecasting. Intuitively, the complex time series can be decomposed into two factors, \ie time-invariant and time-varying components, which indicate static and dynamic patterns, respectively. Nonetheless, existing methods often conflate the time-varying and time-invariant components, and jointly learn the combined long-term patterns and short-term fluctuations, leading to suboptimal performance facing distribution shifts. To address this issue, we initiatively propose a lightweight static-dynamic decomposition framework, TimeEmb, for time series forecasting. TimeEmb innovatively separates time series into two complementary components: (1) time-invariant component, captured by a novel global embedding module that learns persistent representations across time series, and (2) time-varying component, processed by an efficient frequency-domain filtering mechanism inspired by full-spectrum analysis in signal processing. Experiments on real-world datasets demonstrate that TimeEmb outperforms state-of-the-art baselines and requires fewer computational resources. We conduct comprehensive quantitative and qualitative analyses to verify the efficacy of static-dynamic disentanglement. This lightweight framework can also improve existing time-series forecasting methods with simple integration. To ease reproducibility, the code is available at https://github.com/showmeon/TimeEmb.




Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
Background: Quantitative stress perfusion cardiovascular magnetic resonance (CMR) is a powerful tool for assessing myocardial ischemia. Motion correction is essential for accurate pixel-wise mapping but traditional registration-based methods are slow and sensitive to acquisition variability, limiting robustness and scalability. Methods: We developed an unsupervised deep learning-based motion correction pipeline that replaces iterative registration with efficient one-shot estimation. The method corrects motion in three steps and uses robust principal component analysis to reduce contrast-related effects. It aligns the perfusion series and auxiliary images (arterial input function and proton density-weighted series). Models were trained and validated on multivendor data from 201 patients, with 38 held out for testing. Performance was assessed via temporal alignment and quantitative perfusion values, compared to a previously published registration-based method. Results: The deep learning approach significantly improved temporal smoothness of time-intensity curves (p<0.001). Myocardial alignment (Dice = 0.92 (0.04) and 0.91 (0.05)) was comparable to the baseline and superior to before registration (Dice = 0.80 (0.09), p<0.001). Perfusion maps showed reduced motion, with lower standard deviation in the myocardium (0.52 (0.39) ml/min/g) compared to baseline (0.55 (0.44) ml/min/g). Processing time was reduced 15-fold. Conclusion: This deep learning pipeline enables fast, robust motion correction for stress perfusion CMR, improving accuracy across dynamic and auxiliary images. Trained on multivendor data, it generalizes across sequences and may facilitate broader clinical adoption of quantitative perfusion imaging.
Existing positional encoding methods in transformers are fundamentally signal-agnostic, deriving positional information solely from sequence indices while ignoring the underlying signal characteristics. This limitation is particularly problematic for time series analysis, where signals exhibit complex, non-stationary dynamics across multiple temporal scales. We introduce Dynamic Wavelet Positional Encoding (DyWPE), a novel signal-aware framework that generates positional embeddings directly from input time series using the Discrete Wavelet Transform (DWT). Comprehensive experiments in ten diverse time series datasets demonstrate that DyWPE consistently outperforms eight existing state-of-the-art positional encoding methods, achieving average relative improvements of 9.1\% compared to baseline sinusoidal absolute position encoding in biomedical signals, while maintaining competitive computational efficiency.
Despite significant medical advancements, cancer remains the second leading cause of death, with over 600,000 deaths per year in the US. One emerging field, pathway analysis, is promising but still relies on manually derived wet lab data, which is time-consuming to acquire. This work proposes an efficient, effective end-to-end framework for Artificial Intelligence (AI) based pathway analysis that predicts both cancer severity and mutation progression, thus recommending possible treatments. The proposed technique involves a novel combination of time-series machine learning models and pathway analysis. First, mutation sequences were isolated from The Cancer Genome Atlas (TCGA) Database. Then, a novel preprocessing algorithm was used to filter key mutations by mutation frequency. This data was fed into a Recurrent Neural Network (RNN) that predicted cancer severity. Then, the model probabilistically used the RNN predictions, information from the preprocessing algorithm, and multiple drug-target databases to predict future mutations and recommend possible treatments. This framework achieved robust results and Receiver Operating Characteristic (ROC) curves (a key statistical metric) with accuracies greater than 60%, similar to existing cancer diagnostics. In addition, preprocessing played an instrumental role in isolating important mutations, demonstrating that each cancer stage studied may contain on the order of a few-hundred key driver mutations, consistent with current research. Heatmaps based on predicted gene frequency were also generated, highlighting key mutations in each cancer. Overall, this work is the first to propose an efficient, cost-effective end-to-end framework for projecting cancer progression and providing possible treatments without relying on expensive, time-consuming wet lab work.
TimeCluster is a visual analytics technique for discovering structure in long multivariate time series by projecting overlapping windows of data into a low-dimensional space. We show that, when Principal Component Analysis (PCA) is chosen as the dimensionality reduction technique, this procedure is mathematically equivalent to classical linear subspace identification (block-Hankel matrix plus Singular Vector Decomposition (SVD)). In both approaches, the same low-dimensional linear subspace is extracted from the time series data. We first review the TimeCluster method and the theory of subspace system identification. Then we show that forming the sliding-window matrix of a time series yields a Hankel matrix, so applying PCA (via SVD) to this matrix recovers the same principal directions as subspace identification. Thus the cluster coordinates from TimeCluster coincide with the subspace identification methods. We present experiments on synthetic and real dynamical signals confirming that the two embeddings coincide. Finally, we explore and discuss future opportunities enabled by this equivalence, including forecasting from the identified state space, streaming/online extensions, incorporating and visualising external inputs and robust techniques for displaying underlying trends in corrupted data.
Transformer-based models have significantly advanced time series forecasting. Recent work, like the Cross-Attention-only Time Series transformer (CATS), shows that removing self-attention can make the model more accurate and efficient. However, these streamlined architectures may overlook the fine-grained, local temporal dependencies effectively captured by classical statistical models like Vector AutoRegressive Moving Average model (VARMA). To address this gap, we propose VARMAformer, a novel architecture that synergizes the efficiency of a cross-attention-only framework with the principles of classical time series analysis. Our model introduces two key innovations: (1) a dedicated VARMA-inspired Feature Extractor (VFE) that explicitly models autoregressive (AR) and moving-average (MA) patterns at the patch level, and (2) a VARMA-Enhanced Attention (VE-atten) mechanism that employs a temporal gate to make queries more context-aware. By fusing these classical insights into a modern backbone, VARMAformer captures both global, long-range dependencies and local, statistical structures. Through extensive experiments on widely-used benchmark datasets, we demonstrate that our model consistently outperforms existing state-of-the-art methods. Our work validates the significant benefit of integrating classical statistical insights into modern deep learning frameworks for time series forecasting.