Information extraction is the process of automatically extracting structured information from unstructured text data.
Graph-level anomaly detection aims to identify anomalous graphs or subgraphs within graph datasets, playing a vital role in various fields such as fraud detection, review classification, and biochemistry. While Graph Neural Networks (GNNs) have made significant progress in this domain, existing methods rely heavily on large amounts of labeled data, which is often unavailable in real-world scenarios. Additionally, few-shot anomaly detection methods based on GNNs are prone to noise interference, resulting in poor embedding quality and reduced model robustness. To address these challenges, we propose a novel meta-learning-based graph-level anomaly detection framework (MA-GAD), incorporating a graph compression module that reduces the graph size, mitigating noise interference while retaining essential node information. We also leverage meta-learning to extract meta-anomaly information from similar networks, enabling the learning of an initialization model that can rapidly adapt to new tasks with limited samples. This improves the anomaly detection performance on target graphs, and a bias network is used to enhance the distinction between anomalous and normal nodes. Our experimental results, based on four real-world biochemical datasets, demonstrate that MA-GAD outperforms existing state-of-the-art methods in graph-level anomaly detection under few-shot conditions. Experiments on both graph anomaly and subgraph anomaly detection tasks validate the framework's effectiveness on real-world datasets.
Predicting spherical pixel depth from monocular $360^{\circ}$ indoor panoramas is critical for many vision applications. However, existing methods focus on pixel-level accuracy, causing oversmoothed room corners and noise sensitivity. In this paper, we propose a depth estimation framework based on room geometry constraints, which extracts room geometry information through layout prediction and integrates those information into the depth estimation process through background segmentation mechanism. At the model level, our framework comprises a shared feature encoder followed by task-specific decoders for layout estimation, depth estimation, and background segmentation. The shared encoder extracts multi-scale features, which are subsequently processed by individual decoders to generate initial predictions: a depth map, a room layout map, and a background segmentation map. Furthermore, our framework incorporates two strategies: a room geometry-based background depth resolving strategy and a background-segmentation-guided fusion mechanism. The proposed room-geometry-based background depth resolving strategy leverages the room layout and the depth decoder's output to generate the corresponding background depth map. Then, a background-segmentation-guided fusion strategy derives fusion weights for the background and coarse depth maps from the segmentation decoder's predictions. Extensive experimental results on the Stanford2D3D, Matterport3D and Structured3D datasets show that our proposed methods can achieve significantly superior performance than current open-source methods. Our code is available at https://github.com/emiyaning/RGCNet.
The extraction and standardization of pharmacokinetic (PK) information from scientific literature remain significant challenges in computational pharmacology, which limits the reliability of data-driven models in drug development. Large language models (LLMs) have achieved remarkable progress in text understanding and reasoning, yet their adaptation to structured biomedical data, such as PK tables, remains constrained by heterogeneity, noise, and domain shift. To address these limitations, we propose HySim-LLM, a unified mathematical and computational framework that integrates embedding-weighted fine-tuning and manifold-aware denoising to enhance the robustness and interpretability of LLMs. We establish two theoretical results: (1) a similarity-weighted generalization bound that quantifies adaptation performance under embedding divergence, and (2) a manifold-based denoising guarantee that bounds loss contributions from noisy or off-manifold samples. These theorems provide a principled foundation for fine-tuning LLMs in structured biomedical settings. The framework offers a mathematically grounded pathway toward reliable and interpretable LLM adaptation for biomedical and data-intensive scientific domains.
Object tags denote concrete entities and are central to many computer vision tasks, whereas abstract tags capture higher-level information, which is relevant for tasks that require a contextual, potentially subjective scene understanding. Object and abstract tags extracted from images also facilitate interpretability. In this paper, we explore which type of tags is more suitable for the context-dependent and inherently subjective task of image privacy. While object tags are generally used for privacy classification, we show that abstract tags are more effective when the tag budget is limited. Conversely, when a larger number of tags per image is available, object-related information is as useful. We believe that these findings will guide future research in developing more accurate image privacy classifiers, informed by the role of tag types and quantity.
Transformer-based methods have achieved impressive results in time series forecasting. However, existing Transformers still exhibit limitations in sequence modeling as they tend to overemphasize temporal dependencies. This incurs additional computational overhead without yielding corresponding performance gains. We find that the performance of Transformers is highly dependent on the embedding method used to learn effective representations. To address this issue, we extract multivariate features to augment the effective information captured in the embedding layer, yielding multidimensional embeddings that convey richer and more meaningful sequence representations. These representations enable Transformer-based forecasters to better understand the series. Specifically, we introduce Hybrid Temporal and Multivariate Embeddings (HTME). The HTME extractor integrates a lightweight temporal feature extraction module with a carefully designed multivariate feature extraction module to provide complementary features, thereby achieving a balance between model complexity and performance. By combining HTME with the Transformer architecture, we present HTMformer, leveraging the enhanced feature extraction capability of the HTME extractor to build a lightweight forecaster. Experiments conducted on eight real-world datasets demonstrate that our approach outperforms existing baselines in both accuracy and efficiency.
Deep learning has become increasingly important in remote sensing image classification due to its ability to extract semantic information from complex data. Classification tasks often include predefined label hierarchies that represent the semantic relationships among classes. However, these hierarchies are frequently overlooked, and most approaches focus only on fine-grained classification schemes. In this paper, we present a novel Semantics-Aware Hierarchical Consensus (SAHC) method for learning hierarchical features and relationships by integrating hierarchy-specific classification heads within a deep network architecture, each specialized in different degrees of class granularity. The proposed approach employs trainable hierarchy matrices, which guide the network through the learning of the hierarchical structure in a self-supervised manner. Furthermore, we introduce a hierarchical consensus mechanism to ensure consistent probability distributions across different hierarchical levels. This mechanism acts as a weighted ensemble being able to effectively leverage the inherent structure of the hierarchical classification task. The proposed SAHC method is evaluated on three benchmark datasets with different degrees of hierarchical complexity on different tasks, using distinct backbone architectures to effectively emphasize its adaptability. Experimental results show both the effectiveness of the proposed approach in guiding network learning and the robustness of the hierarchical consensus for remote sensing image classification tasks.
Watermarking embeds imperceptible patterns into images for authenticity verification. However, existing methods often lack robustness against various transformations primarily including distortions, image regeneration, and adversarial perturbation, creating real-world challenges. In this work, we introduce SpecGuard, a novel watermarking approach for robust and invisible image watermarking. Unlike prior approaches, we embed the message inside hidden convolution layers by converting from the spatial domain to the frequency domain using spectral projection of a higher frequency band that is decomposed by wavelet projection. Spectral projection employs Fast Fourier Transform approximation to transform spatial data into the frequency domain efficiently. In the encoding phase, a strength factor enhances resilience against diverse attacks, including adversarial, geometric, and regeneration-based distortions, ensuring the preservation of copyrighted information. Meanwhile, the decoder leverages Parseval's theorem to effectively learn and extract the watermark pattern, enabling accurate retrieval under challenging transformations. We evaluate the proposed SpecGuard based on the embedded watermark's invisibility, capacity, and robustness. Comprehensive experiments demonstrate the proposed SpecGuard outperforms the state-of-the-art models. To ensure reproducibility, the full code is released on \href{https://github.com/inzamamulDU/SpecGuard_ICCV_2025}{\textcolor{blue}{\textbf{GitHub}}}.
Despite demonstrating remarkable performance across a wide range of tasks, large language models (LLMs) have also been found to frequently produce outputs that are incomplete or selectively omit key information. In sensitive domains, such omissions can result in significant harm comparable to that posed by factual inaccuracies, including hallucinations. In this study, we address the challenge of evaluating the comprehensiveness of LLM-generated texts, focusing on the detection of missing information or underrepresented viewpoints. We investigate three automated evaluation strategies: (1) an NLI-based method that decomposes texts into atomic statements and uses natural language inference (NLI) to identify missing links, (2) a Q&A-based approach that extracts question-answer pairs and compares responses across sources, and (3) an end-to-end method that directly identifies missing content using LLMs. Our experiments demonstrate the surprising effectiveness of the simple end-to-end approach compared to more complex methods, though at the cost of reduced robustness, interpretability and result granularity. We further assess the comprehensiveness of responses from several popular open-weight LLMs when answering user queries based on multiple sources.
The emergence of agent-based systems represents a significant advancement in artificial intelligence, with growing applications in automated data extraction. However, chemical information extraction remains a formidable challenge due to the inherent heterogeneity of chemical data. Current agent-based approaches, both general-purpose and domain-specific, exhibit limited performance in this domain. To address this gap, we present ChemX, a comprehensive collection of 10 manually curated and domain-expert-validated datasets focusing on nanomaterials and small molecules. These datasets are designed to rigorously evaluate and enhance automated extraction methodologies in chemistry. To demonstrate their utility, we conduct an extensive benchmarking study comparing existing state-of-the-art agentic systems such as ChatGPT Agent and chemical-specific data extraction agents. Additionally, we introduce our own single-agent approach that enables precise control over document preprocessing prior to extraction. We further evaluate the performance of modern baselines, such as GPT-5 and GPT-5 Thinking, to compare their capabilities with agentic approaches. Our empirical findings reveal persistent challenges in chemical information extraction, particularly in processing domain-specific terminology, complex tabular and schematic representations, and context-dependent ambiguities. The ChemX benchmark serves as a critical resource for advancing automated information extraction in chemistry, challenging the generalization capabilities of existing methods, and providing valuable insights into effective evaluation strategies.




LiDAR semantic segmentation is crucial for autonomous vehicles and mobile robots, requiring high accuracy and real-time processing, especially on resource-constrained embedded systems. Previous state-of-the-art methods often face a trade-off between accuracy and speed. Point-based and sparse convolution-based methods are accurate but slow due to the complexity of neighbor searching and 3D convolutions. Projection-based methods are faster but lose critical geometric information during the 2D projection. Additionally, many recent methods rely on test-time augmentation (TTA) to improve performance, which further slows the inference. Moreover, the pre-processing phase across all methods increases execution time and is demanding on embedded platforms. Therefore, we introduce HARP-NeXt, a high-speed and accurate LiDAR semantic segmentation network. We first propose a novel pre-processing methodology that significantly reduces computational overhead. Then, we design the Conv-SE-NeXt feature extraction block to efficiently capture representations without deep layer stacking per network stage. We also employ a multi-scale range-point fusion backbone that leverages information at multiple abstraction levels to preserve essential geometric details, thereby enhancing accuracy. Experiments on the nuScenes and SemanticKITTI benchmarks show that HARP-NeXt achieves a superior speed-accuracy trade-off compared to all state-of-the-art methods, and, without relying on ensemble models or TTA, is comparable to the top-ranked PTv3, while running 24$\times$ faster. The code is available at https://github.com/SamirAbouHaidar/HARP-NeXt