Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
We explore a situation in which the target domain is accessible, but real-time data annotation is not feasible. Instead, we would like to construct an alternative training set from a large-scale data server so that a competitive model can be obtained. For this problem, because the target domain usually exhibits distinct modes (i.e., semantic clusters representing data distribution), if the training set does not contain these target modes, the model performance would be compromised. While prior existing works improve algorithms iteratively, our research explores the often-overlooked potential of optimizing the structure of the data server. Inspired by the hierarchical nature of web search engines, we introduce a hierarchical data server, together with a bipartite mode matching algorithm (BMM) to align source and target modes. For each target mode, we look in the server data tree for the best mode match, which might be large or small in size. Through bipartite matching, we aim for all target modes to be optimally matched with source modes in a one-on-one fashion. Compared with existing training set search algorithms, we show that the matched server modes constitute training sets that have consistently smaller domain gaps with the target domain across object re-identification (re-ID) and detection tasks. Consequently, models trained on our searched training sets have higher accuracy than those trained otherwise. BMM allows data-centric unsupervised domain adaptation (UDA) orthogonal to existing model-centric UDA methods. By combining the BMM with existing UDA methods like pseudo-labeling, further improvement is observed.
Early detection of neurodegenerative diseases such as Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) is essential for reducing the risk of progression to severe disease stages. As AD and FTD propagate along white-matter regions in a global, graph-dependent manner, graph-based neural networks are well suited to capture these patterns. Hence, we introduce ARMARecon, a unified graph learning framework that integrates Autoregressive Moving Average (ARMA) graph filtering with a reconstruction-driven objective to enhance feature representation and improve classification accuracy. ARMARecon effectively models both local and global connectivity by leveraging 20-bin Fractional Anisotropy (FA) histogram features extracted from white-matter regions, while mitigating over-smoothing. Overall, ARMARecon achieves superior performance compared to state-of-the-art methods on the multi-site dMRI datasets ADNI and NIFD.
Segment Anything 3 (SAM3) has established a powerful foundation that robustly detects, segments, and tracks specified targets in videos. However, in its original implementation, its group-level collective memory selection is suboptimal for complex multi-object scenarios, as it employs a synchronized decision across all concurrent targets conditioned on their average performance, often overlooking individual reliability. To this end, we propose SAM3-DMS, a training-free decoupled strategy that utilizes fine-grained memory selection on individual objects. Experiments demonstrate that our approach achieves robust identity preservation and tracking stability. Notably, our advantage becomes more pronounced with increased target density, establishing a solid foundation for simultaneous multi-target video segmentation in the wild.
Most Multimodal Sentiment Analysis research has focused on point-wise regression. While straightforward, this approach is sensitive to label noise and neglects whether one sample is more positive than another, resulting in unstable predictions and poor correlation alignment. Pairwise ordinal learning frameworks emerged to address this gap, capturing relative order by learning from comparisons. Yet, they introduce two new trade-offs: First, they assign uniform importance to all comparisons, failing to adaptively focus on hard-to-rank samples. Second, they employ static ranking margins, which fail to reflect the varying semantic distances between sentiment groups. To address this, we propose a Two-Stage Group-wise Ranking and Calibration Framework (GRCF) that adapts the philosophy of Group Relative Policy Optimization (GRPO). Our framework resolves these trade-offs by simultaneously preserving relative ordinal structure, ensuring absolute score calibration, and adaptively focusing on difficult samples. Specifically, Stage 1 introduces a GRPO-inspired Advantage-Weighted Dynamic Margin Ranking Loss to build a fine-grained ordinal structure. Stage 2 then employs an MAE-driven objective to align prediction magnitudes. To validate its generalizability, we extend GRCF to classification tasks, including multimodal humor detection and sarcasm detection. GRCF achieves state-of-the-art performance on core regression benchmarks, while also showing strong generalizability in classification tasks.
Recent advances in video anomaly detection (VAD) mainly focus on ground-based surveillance or unmanned aerial vehicle (UAV) videos with static backgrounds, whereas research on UAV videos with dynamic backgrounds remains limited. Unlike static scenarios, dynamically captured UAV videos exhibit multi-source motion coupling, where the motion of objects and UAV-induced global motion are intricately intertwined. Consequently, existing methods may misclassify normal UAV movements as anomalies or fail to capture true anomalies concealed within dynamic backgrounds. Moreover, many approaches do not adequately address the joint modeling of inter-frame continuity and local spatial correlations across diverse temporal scales. To overcome these limitations, we propose the Frequency-Assisted Temporal Dilation Mamba (FTDMamba) network for UAV VAD, including two core components: (1) a Frequency Decoupled Spatiotemporal Correlation Module, which disentangles coupled motion patterns and models global spatiotemporal dependencies through frequency analysis; and (2) a Temporal Dilation Mamba Module, which leverages Mamba's sequence modeling capability to jointly learn fine-grained temporal dynamics and local spatial structures across multiple temporal receptive fields. Additionally, unlike existing UAV VAD datasets which focus on static backgrounds, we construct a large-scale Moving UAV VAD dataset (MUVAD), comprising 222,736 frames with 240 anomaly events across 12 anomaly types. Extensive experiments demonstrate that FTDMamba achieves state-of-the-art (SOTA) performance on two public static benchmarks and the new MUVAD dataset. The code and MUVAD dataset will be available at: https://github.com/uavano/FTDMamba.
Surface defects on Printed Circuit Boards (PCBs) directly compromise product reliability and safety. However, achieving high-precision detection is challenging because PCB defects are typically characterized by tiny sizes, high texture similarity, and uneven scale distributions. To address these challenges, this paper proposes a novel framework based on YOLOv11n, named SME-YOLO (Small-target Multi-scale Enhanced YOLO). First, we employ the Normalized Wasserstein Distance Loss (NWDLoss). This metric effectively mitigates the sensitivity of Intersection over Union (IoU) to positional deviations in tiny objects. Second, the original upsampling module is replaced by the Efficient Upsampling Convolution Block (EUCB). By utilizing multi-scale convolutions, the EUCB gradually recovers spatial resolution and enhances the preservation of edge and texture details for tiny defects. Finally, this paper proposes the Multi-Scale Focused Attention (MSFA) module. Tailored to the specific spatial distribution of PCB defects, this module adaptively strengthens perception within key scale intervals, achieving efficient fusion of local fine-grained features and global context information. Experimental results on the PKU-PCB dataset demonstrate that SME-YOLO achieves state-of-the-art performance. Specifically, compared to the baseline YOLOv11n, SME-YOLO improves mAP by 2.2% and Precision by 4%, validating the effectiveness of the proposed method.
Large-scale vision-language models such as CLIP achieve strong zero-shot recognition but struggle with classes that are rarely seen during pretraining, including newly emerging entities and culturally specific categories. We introduce LiteEmbed, a lightweight framework for few-shot personalization of CLIP that enables new classes to be added without retraining its encoders. LiteEmbed performs subspace-guided optimization of text embeddings within CLIP's vocabulary, leveraging a PCA-based decomposition that disentangles coarse semantic directions from fine-grained variations. Two complementary objectives, coarse alignment and fine separation, jointly preserve global semantic consistency while enhancing discriminability among visually similar classes. Once optimized, the embeddings are plug-and-play, seamlessly substituting CLIP's original text features across classification, retrieval, segmentation, and detection tasks. Extensive experiments demonstrate substantial gains over prior methods, establishing LiteEmbed as an effective approach for adapting CLIP to underrepresented, rare, or unseen classes.
As autonomous driving moves toward full scene understanding, 3D semantic occupancy prediction has emerged as a crucial perception task, offering voxel-level semantics beyond traditional detection and segmentation paradigms. However, such a refined representation for scene understanding incurs prohibitive computation and memory overhead, posing a major barrier to practical real-time deployment. To address this, we propose SUG-Occ, an explicit Semantics and Uncertainty Guided Sparse Learning Enabled 3D Occupancy Prediction Framework, which exploits the inherent sparsity of 3D scenes to reduce redundant computation while maintaining geometric and semantic completeness. Specifically, we first utilize semantic and uncertainty priors to suppress projections from free space during view transformation while employing an explicit unsigned distance encoding to enhance geometric consistency, producing a structurally consistent sparse 3D representation. Secondly, we design an cascade sparse completion module via hyper cross sparse convolution and generative upsampling to enable efficiently coarse-to-fine reasoning. Finally, we devise an object contextual representation (OCR) based mask decoder that aggregates global semantic context from sparse features and refines voxel-wise predictions via lightweight query-context interactions, avoiding expensive attention operations over volumetric features. Extensive experiments on SemanticKITTI benchmark demonstrate that the proposed approach outperforms the baselines, achieving a 7.34/% improvement in accuracy and a 57.8\% gain in efficiency.
Objectives: To overcome challenges in diagnosing pericoronitis on panoramic radiographs, an AI-assisted assessment system integrating anatomical localization, pathological classification, and interpretability. Methods: A two-stage deep learning pipeline was implemented. The first stage used YOLOv8 to detect third molars and classify their anatomical positions and angulations based on Winter's classification. Detected regions were then fed into a second-stage classifier, a modified ResNet-50 architecture, for detecting radiographic features suggestive of pericoronitis. To enhance clinical trust, Grad-CAM was used to highlight key diagnostic regions on the radiographs. Results: The YOLOv8 component achieved 92% precision and 92.5% mean average precision. The ResNet-50 classifier yielded F1-scores of 88% for normal cases and 86% for pericoronitis. Radiologists reported 84% alignment between Grad-CAM and their diagnostic impressions, supporting the radiographic relevance of the interpretability output. Conclusion: The system shows strong potential for AI-assisted panoramic assessment, with explainable AI features that support clinical confidence.
Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4\%$ and the collision rate by $74.4\%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.