Abstract:As local AI grows in popularity, there is a critical gap between the benchmark performance of object detectors and their practical viability on consumer-grade hardware. While models like YOLOv10s promise real-time speeds, these metrics are typically achieved on high-power, desktop-class GPUs. This paper reveals that on resource-constrained systems, such as laptops with RTX 4060 GPUs, performance is not compute-bound but is instead dominated by system-level bottlenecks, as illustrated by a simple bottleneck test. To overcome this hardware-level constraint, we introduce a Two-Pass Adaptive Inference algorithm, a model-independent approach that requires no architectural changes. This study mainly focuses on adaptive inference strategies and undertakes a comparative analysis of architectural early-exit and resolution-adaptive routing, highlighting their respective trade-offs within a unified evaluation framework. The system uses a fast, low-resolution pass and only escalates to a high-resolution model pass when detection confidence is low. On a 5000-image COCO dataset, our method achieves a 1.85x speedup over a PyTorch Early-Exit baseline, with a modest mAP loss of 5.51%. This work provides a practical and reproducible blueprint for deploying high-performance, real-time AI on consumer-grade devices by shifting the focus from pure model optimization to hardware-aware inference strategies that maximize throughput.
Abstract:Recent changes to greenhouse gas emission policies are catalyzing the electric vehicle (EV) market making it readily accessible to consumers. While there are challenges that arise with dense deployment of EVs, one of the major future concerns is cyber security threat. In this paper, cyber security threats in the form of tampering with EV battery's State of Charge (SOC) was explored. A Back Propagation (BP) Neural Network (NN) was trained and tested based on experimental data to estimate SOC of battery under normal operation and cyber-attack scenarios. NeuralWare software was used to run scenarios. Different statistic metrics of the predicted values were compared against the actual values of the specific battery tested to measure the stability and accuracy of the proposed BP network under different operating conditions. The results showed that BP NN was able to capture and detect the false entries due to a cyber-attack on its network.