Abstract:Generative AI (GEN AI) models have revolutionized diverse application domains but present substantial challenges due to reliability concerns, including hallucinations, semantic drift, and inherent biases. These models typically operate as black-boxes, complicating transparent and objective evaluation. Current evaluation methods primarily depend on subjective human assessment, limiting scalability, transparency, and effectiveness. This research proposes a systematic methodology using deterministic and Large Language Model (LLM)-generated Knowledge Graphs (KGs) to continuously monitor and evaluate GEN AI reliability. We construct two parallel KGs: (i) a deterministic KG built using explicit rule-based methods, predefined ontologies, domain-specific dictionaries, and structured entity-relation extraction rules, and (ii) an LLM-generated KG dynamically derived from real-time textual data streams such as live news articles. Utilizing real-time news streams ensures authenticity, mitigates biases from repetitive training, and prevents adaptive LLMs from bypassing predefined benchmarks through feedback memorization. To quantify structural deviations and semantic discrepancies, we employ several established KG metrics, including Instantiated Class Ratio (ICR), Instantiated Property Ratio (IPR), and Class Instantiation (CI). An automated real-time monitoring framework continuously computes deviations between deterministic and LLM-generated KGs. By establishing dynamic anomaly thresholds based on historical structural metric distributions, our method proactively identifies and flags significant deviations, thus promptly detecting semantic anomalies or hallucinations. This structured, metric-driven comparison between deterministic and dynamically generated KGs delivers a robust and scalable evaluation framework.
Abstract:The combination of LLM agents with external tools enables models to solve complex tasks beyond their knowledge base. Human-designed tools are inflexible and restricted to solutions within the scope of pre-existing tools created by experts. To address this problem, we propose ATLASS, an advanced tool learning and selection system designed as a closed-loop framework. It enables the LLM to solve problems by dynamically generating external tools on demand. In this framework, agents play a crucial role in orchestrating tool selection, execution, and refinement, ensuring adaptive problem-solving capabilities. The operation of ATLASS follows three phases: The first phase, Understanding Tool Requirements, involves the Agents determining whether tools are required and specifying their functionality; the second phase, Tool Retrieval/Generation, involves the Agents retrieving or generating tools based on their availability; and the third phase, Task Solving, involves combining all the component tools necessary to complete the initial task. The Tool Dataset stores the generated tools, ensuring reusability and minimizing inference cost. Current LLM-based tool generation systems have difficulty creating complex tools that need APIs or external packages. In ATLASS, we solve the problem by automatically setting up the environment, fetching relevant API documentation online, and using a Python interpreter to create a reliable, versatile tool that works in a wider range of situations. OpenAI GPT-4.0 is used as the LLM agent, and safety and ethical concerns are handled through human feedback before executing generated code. By addressing the limitations of predefined toolsets and enhancing adaptability, ATLASS serves as a real-world solution that empowers users with dynamically generated tools for complex problem-solving.
Abstract:The black-box nature of Convolutional Neural Networks (CNNs) and their reliance on large datasets limit their use in complex domains with limited labeled data. Physics-Guided Neural Networks (PGNNs) have emerged to address these limitations by integrating scientific principles and real-world knowledge, enhancing model interpretability and efficiency. This paper proposes a novel Physics-Guided CNN (PGCNN) architecture that incorporates dynamic, trainable, and automated LLM-generated, widely recognized rules integrated into the model as custom layers to address challenges like limited data and low confidence scores. The PGCNN is evaluated on multiple datasets, demonstrating superior performance compared to a baseline CNN model. Key improvements include a significant reduction in false positives and enhanced confidence scores for true detection. The results highlight the potential of PGCNNs to improve CNN performance for broader application areas.