Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Climate discourse online plays a crucial role in shaping public understanding of climate change and influencing political and policy outcomes. However, climate communication unfolds across structurally distinct platforms with fundamentally different incentive structures: paid advertising ecosystems incentivize targeted, strategic persuasion, while public social media platforms host largely organic, user-driven discourse. Existing computational studies typically analyze these environments in isolation, limiting our ability to distinguish institutional messaging from public expression. In this work, we present a comparative analysis of climate discourse across paid advertisements on Meta (previously known as Facebook) and public posts on Bluesky from July 2024 to September 2025. We introduce an interpretable, end-to-end thematic discovery and assignment framework that clusters texts by semantic similarity and leverages large language models (LLMs) to generate concise, human-interpretable theme labels. We evaluate the quality of the induced themes against traditional topic modeling baselines using both human judgments and an LLM-based evaluator, and further validate their semantic coherence through downstream stance prediction and theme-guided retrieval tasks. Applying the resulting themes, we characterize systematic differences between paid climate messaging and public climate discourse and examine how thematic prevalence shifts around major political events. Our findings show that platform-level incentives are reflected in the thematic structure, stance alignment, and temporal responsiveness of climate narratives. While our empirical analysis focuses on climate communication, the proposed framework is designed to support comparative narrative analysis across heterogeneous communication environments.
Cross-lingual topic modeling seeks to uncover coherent and semantically aligned topics across languages - a task central to multilingual understanding. Yet most existing models learn topics in disjoint, language-specific spaces and rely on alignment mechanisms (e.g., bilingual dictionaries) that often fail to capture deep cross-lingual semantics, resulting in loosely connected topic spaces. Moreover, these approaches often overlook the rich semantic signals embedded in multilingual pretrained representations, further limiting their ability to capture fine-grained alignment. We introduce GloCTM (Global Context Space for Cross-Lingual Topic Model), a novel framework that enforces cross-lingual topic alignment through a unified semantic space spanning the entire model pipeline. GloCTM constructs enriched input representations by expanding bag-of-words with cross-lingual lexical neighborhoods, and infers topic proportions using both local and global encoders, with their latent representations aligned through internal regularization. At the output level, the global topic-word distribution, defined over the combined vocabulary, structurally synchronizes topic meanings across languages. To further ground topics in deep semantic space, GloCTM incorporates a Centered Kernel Alignment (CKA) loss that aligns the latent topic space with multilingual contextual embeddings. Experiments across multiple benchmarks demonstrate that GloCTM significantly improves topic coherence and cross-lingual alignment, outperforming strong baselines.
Topic modeling has extensive applications in text mining and data analysis across various industrial sectors. Although the concept of granularity holds significant value for business applications by providing deeper insights, the capability of topic modeling methods to produce granular topics has not been thoroughly explored. In this context, this paper introduces a framework called TIDE, which primarily provides a novel granular topic modeling method based on large language models (LLMs) as a core feature, along with other useful functionalities for business applications, such as summarizing long documents, topic parenting, and distillation. Through extensive experiments on a variety of public and real-world business datasets, we demonstrate that TIDE's topic modeling approach outperforms modern topic modeling methods, and our auxiliary components provide valuable support for dealing with industrial business scenarios. The TIDE framework is currently undergoing the process of being open sourced.
Human cognition exhibits strong circadian modulation, yet its influence on high-dimensional semantic behavior remains poorly understood. Using large-scale Reddit data, we quantify time-of-day variation in language use by embedding text into a pretrained transformer model and measuring semantic entropy as an index of linguistic exploration-exploitation, for which we show a robust circadian rhythmicity that could be entrained by seasonal light cues. Distinguishing between local and global semantic entropy reveals a systematic temporal dissociation: local semantic exploration peaks in the morning, reflecting broader exploration of semantic space, whereas global semantic diversity peaks later in the day as submissions accumulate around already established topics, consistent with "rich-get-richer" dynamics. These patterns are not explained by sentiment or affective valence, indicating that semantic exploration captures a cognitive dimension distinct from mood. The observed temporal structure aligns with known diurnal patterns in neuromodulatory systems, suggesting that biological circadian rhythms extend to the semantic domain.
This study investigates the use of neural topic modeling and LLMs to uncover meaningful themes from patient storytelling data, to offer insights that could contribute to more patient-oriented healthcare practices. We analyze a collection of transcribed interviews with cancer patients (132,722 words in 13 interviews). We first evaluate BERTopic and Top2Vec for individual interview summarization by using similar preprocessing, chunking, and clustering configurations to ensure a fair comparison on Keyword Extraction. LLMs (GPT4) are then used for the next step topic labeling. Their outputs for a single interview (I0) are rated through a small-scale human evaluation, focusing on {coherence}, {clarity}, and {relevance}. Based on the preliminary results and evaluation, BERTopic shows stronger performance and is selected for further experimentation using three {clinically oriented embedding} models. We then analyzed the full interview collection with the best model setting. Results show that domain-specific embeddings improved topic \textit{precision} and \textit{interpretability}, with BioClinicalBERT producing the most consistent results across transcripts. The global analysis of the full dataset of 13 interviews, using the BioClinicalBERT embedding model, reveals the most dominant topics throughout all 13 interviews, namely ``Coordination and Communication in Cancer Care Management" and ``Patient Decision-Making in Cancer Treatment Journey''. Although the interviews are machine translations from Dutch to English, and clinical professionals are not involved in this evaluation, the findings suggest that neural topic modeling, particularly BERTopic, can help provide useful feedback to clinicians from patient interviews. This pipeline could support more efficient document navigation and strengthen the role of patients' voices in healthcare workflows.
With the in-depth integration of mobile Internet and widespread adoption of social platforms, user-generated content in the Chinese cyberspace has witnessed explosive growth. Among this content, the proliferation of toxic comments poses severe challenges to individual mental health, community atmosphere and social trust. Owing to the strong context dependence, cultural specificity and rapid evolution of Chinese cyber language, toxic expressions are often conveyed through complex forms such as homophones and metaphors, imposing notable limitations on traditional detection methods. To address this issue, this review focuses on the core topic of natural language processing based toxic comment detection in the Chinese cyberspace, systematically collating and critically analyzing the research progress and key challenges in this field. This review first defines the connotation and characteristics of Chinese toxic comments, and analyzes the platform ecology and transmission mechanisms they rely on. It then comprehensively reviews the construction methods and limitations of existing public datasets, and proposes a novel fine-grained and scalable framework for toxic comment definition and classification, along with corresponding data annotation and quality assessment strategies. We systematically summarize the evolutionary path of detection models from traditional methods to deep learning, with special emphasis on the importance of interpretability in model design. Finally, we thoroughly discuss the open challenges faced by current research and provide forward-looking suggestions for future research directions.
Authorship verification (AV) is the task of determining whether two texts were written by the same author and has been studied extensively, predominantly for English data. In contrast, large-scale benchmarks and systematic evaluations for other languages remain scarce. We address this gap by introducing GerAV, a comprehensive benchmark for German AV comprising over 600k labeled text pairs. GerAV is built from Twitter and Reddit data, with the Reddit part further divided into in-domain and cross-domain message-based subsets, as well as a profile-based subset. This design enables controlled analysis of the effects of data source, topical domain, and text length. Using the provided training splits, we conduct a systematic evaluation of strong baselines and state-of-the-art models and find that our best approach, a fine-tuned large language model, outperforms recent baselines by up to 0.09 absolute F1 score and surpasses GPT-5 in a zero-shot setting by 0.08. We further observe a trade-off between specialization and generalization: models trained on specific data types perform best under matching conditions but generalize less well across data regimes, a limitation that can be mitigated by combining training sources. Overall, GerAV provides a challenging and versatile benchmark for advancing research on German and cross-domain AV.
We study sentence-level identification of the 19 values in the Schwartz motivational continuum as a concrete formulation of human value detection in text. The setting - out-of-context sentences from news and political manifestos - features sparse moral cues and severe class imbalance. This combination makes fine-grained sentence-level value detection intrinsically difficult, even for strong modern neural models. We first operationalize a binary moral presence task ("does any value appear?") and show that it is learnable from single sentences (positive-class F1 $\approx$ 0.74 with calibrated thresholds). We then compare a presence-gated hierarchy to a direct multi-label classifier under matched compute, both based on DeBERTa-base and augmented with lightweight signals (prior-sentence context, LIWC-22/eMFD/MJD lexica, and topic features). The hierarchy does not outperform direct prediction, indicating that gate recall limits downstream gains. We also benchmark instruction-tuned LLMs - Gemma 2 9B, Llama 3.1 8B, Mistral 8B, and Qwen 2.5 7B - in zero-/few-shot and QLoRA setups and build simple ensembles; a soft-vote supervised ensemble reaches macro-F1 0.332, significantly surpassing the best single supervised model and exceeding prior English-only baselines. Overall, in this scenario, lightweight signals and small ensembles yield the most reliable improvements, while hierarchical gating offers limited benefit. We argue that, under an 8 GB single-GPU constraint and at the 7-9B scale, carefully tuned supervised encoders remain a strong and compute-efficient baseline for structured human value detection, and we outline how richer value structure and sentence-in-document context could further improve performance.
The quality of answers generated by large language models (LLMs) in retrieval-augmented generation (RAG) is largely influenced by the contextual information contained in the retrieved documents. A key challenge for improving RAG is to predict both the utility of retrieved documents -- quantified as the performance gain from using context over generation without context -- and the quality of the final answers in terms of correctness and relevance. In this paper, we define two prediction tasks within RAG. The first is retrieval performance prediction (RPP), which estimates the utility of retrieved documents. The second is generation performance prediction (GPP), which estimates the final answer quality. We hypothesise that in RAG, the topical relevance of retrieved documents correlates with their utility, suggesting that query performance prediction (QPP) approaches can be adapted for RPP and GPP. Beyond these retriever-centric signals, we argue that reader-centric features, such as the LLM's perplexity of the retrieved context conditioned on the input query, can further enhance prediction accuracy for both RPP and GPP. Finally, we propose that features reflecting query-agnostic document quality and readability can also provide useful signals to the predictions. We train linear regression models with the above categories of predictors for both RPP and GPP. Experiments on the Natural Questions (NQ) dataset show that combining predictors from multiple feature categories yields the most accurate estimates of RAG performance.
Open-set learning and discovery (OSLD) is a challenging machine learning task in which samples from new (unknown) classes can appear at test time. It can be seen as a generalization of zero-shot learning, where the new classes are not known a priori, hence involving the active discovery of new classes. While zero-shot learning has been extensively studied in text classification, especially with the emergence of pre-trained language models, open-set learning and discovery is a comparatively new setup for the text domain. To this end, we introduce the first multilingual open-set learning and discovery (MOSLD) benchmark for text categorization by topic, comprising 960K data samples across 12 languages. To construct the benchmark, we (i) rearrange existing datasets and (ii) collect new data samples from the news domain. Moreover, we propose a novel framework for the OSLD task, which integrates multiple stages to continuously discover and learn new classes. We evaluate several language models, including our own, to obtain results that can be used as reference for future work. We release our benchmark at https://github.com/Adriana19Valentina/MOSLD-Bench.