Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Code-switching (CS), which is when Vietnamese speech uses English words like drug names or procedures, is a common phenomenon in Vietnamese medical communication. This creates challenges for Automatic Speech Recognition (ASR) systems, especially in low-resource languages like Vietnamese. Current most ASR systems struggle to recognize correctly English medical terms within Vietnamese sentences, and no benchmark addresses this challenge. In this paper, we construct a 34-hour \textbf{Vi}etnamese \textbf{Med}ical \textbf{C}ode-\textbf{S}witching \textbf{S}peech dataset (ViMedCSS) containing 16,576 utterances. Each utterance includes at least one English medical term drawn from a curated bilingual lexicon covering five medical topics. Using this dataset, we evaluate several state-of-the-art ASR models and examine different specific fine-tuning strategies for improving medical term recognition to investigate the best approach to solve in the dataset. Experimental results show that Vietnamese-optimized models perform better on general segments, while multilingual pretraining helps capture English insertions. The combination of both approaches yields the best balance between overall and code-switched accuracy. This work provides the first benchmark for Vietnamese medical code-switching and offers insights into effective domain adaptation for low-resource, multilingual ASR systems.
Utilizing Large Language Models (LLM) as chatbots in diverse business scenarios often presents the challenge of maintaining topic continuity. Abrupt shifts in topics can lead to poor user experiences and inefficient utilization of computational resources. In this paper, we present a topic continuity model aimed at assessing whether a response aligns with the initial conversation topic. Our model is built upon the expansion of the corresponding natural language understanding (NLU) model into quantifiable terms using a Naive Bayes approach. Subsequently, we have introduced an attention mechanism and logarithmic nonlinearity to enhance its capability to capture topic continuity. This approach allows us to convert the NLU model into an interpretable analytical formula. In contrast to many NLU models constrained by token limits, our proposed model can seamlessly handle conversations of any length with linear time complexity. Furthermore, the attention mechanism significantly improves the model's ability to identify topic continuity in complex conversations. According to our experiments, our model consistently outperforms traditional methods, particularly in handling lengthy and intricate conversations. This unique capability offers us an opportunity to ensure the responsible and interpretable use of LLMs.
Understanding cyber security is increasingly important for individuals and organizations. However, a lot of information related to cyber security can be difficult to understand to those not familiar with the topic. In this study, we focus on investigating how large language models (LLMs) could be utilized in automatic text simplification (ATS) of Common Vulnerability and Exposure (CVE) descriptions. Automatic text simplification has been studied in several contexts, such as medical, scientific, and news texts, but it has not yet been studied to simplify texts in the rapidly changing and complex domain of cyber security. We created a baseline for cyber security ATS and a test dataset of 40 CVE descriptions, evaluated by two groups of cyber security experts in two survey rounds. We have found that while out-of-the box LLMs can make the text appear simpler, they struggle with meaning preservation. Code and data are available at https://version.aalto.fi/gitlab/vehomav1/simplification\_nmi.
Oversight for agentic AI is often discussed as a single goal ("human control"), yet early adoption may produce role-specific expectations. We present a comparative analysis of two newly active Reddit communities in Jan--Feb 2026 that reflect different socio-technical roles: r/OpenClaw (deployment and operations) and r/Moltbook (agent-centered social interaction). We conceptualize this period as an early-stage crystallization phase, where oversight expectations form before norms reach equilibrium. Using topic modeling in a shared comparison space, a coarse-grained oversight-theme abstraction, engagement-weighted salience, and divergence tests, we show the communities are strongly separable (JSD =0.418, cosine =0.372, permutation $p=0.0005$). Across both communities, "human control" is an anchor term, but its operational meaning diverges: r/OpenClaw} emphasizes execution guardrails and recovery (action-risk), while r/Moltbook} emphasizes identity, legitimacy, and accountability in public interaction (meaning-risk). The resulting distinction offers a portable lens for designing and evaluating oversight mechanisms that match agent role, rather than applying one-size-fits-all control policies.
The multi-commodity flow (MCF) problem is a fundamental topic in network flow and combinatorial optimization, with broad applications in transportation, communication, and logistics, etc. Nowadays, the rapid expansion of allocation systems has posed challenges for existing optimization engines in balancing optimality and tractability. In this paper, we present Pram, the first ML-based method that leverages the reasoning power of multimodal language models (MLMs) for addressing the trade-off dilemma -- a great need of service providers. As part of our proposal, Pram (i) quickly computes high-quality allocations by dividing the original problem into local subproblems, which are then resolved by an MLM-powered "agent", and (ii) ensures global consistency by harmonizing these subproblems via a multi-agent reinforcement learning algorithm. Theoretically, we show that Pram, which learns to perform gradient descent in context, provably converges to the optimum within the family of MCF problems. Empirically, on real-world datasets and public topologies, Pram achieves performance comparable to, and in some cases even surpassing, linear programming solvers (very close to the optimal solution), and substantially lower runtimes (1 to 2 orders of magnitude faster). Moreover, Pram exhibits strong robustness (<10\% performance degradation under link failures or flow bursts), demonstrating MLM's generalization ability to unforeseen events. Pram is objective-agnostic and seamlessly integrates with mainstream allocation systems, providing a practical and scalable solution for future networks.
Language models have become practical tools for quantum computing education and research, from summarizing technical papers to explaining theoretical concepts and answering questions about recent developments in the field. While existing benchmarks evaluate quantum code generation and circuit design, their understanding of quantum computing concepts has not been systematically measured. Quantum-Audit addresses this gap with 2,700 questions covering core quantum computing topics. We evaluate 26 models from leading organizations. Our benchmark comprises 1,000 expert-written questions, 1,000 questions extracted from research papers using LLMs and validated by experts, plus an additional 700 questions including 350 open-ended questions and 350 questions with false premises to test whether models can correct erroneous assumptions. Human participants scored between 23% and 86%, with experts averaging 74%. Top-performing models exceeded the expert average, with Claude Opus 4.5 reaching 84% accuracy, though top models showed an average 12-point accuracy drop on expert-written questions compared to LLM-generated ones. Performance declined further on advanced topics, dropping to 73% on security questions. Additionally, models frequently accepted and reinforced false premises embedded in questions instead of identifying them, with accuracy below 66% on these critical reasoning tasks.
City councils play a crucial role in local governance, directly influencing citizens' daily lives through decisions made during municipal meetings. These deliberations are formally documented in meeting minutes, which serve as official records of discussions, decisions, and voting outcomes. Despite their importance, municipal meeting records have received little attention in Information Retrieval (IR) and Natural Language Processing (NLP), largely due to the lack of annotated datasets, which ultimately limit the development of computational models. To address this gap, we introduce CitiLink-Minutes, a multilayer dataset of 120 European Portuguese municipal meeting minutes from six municipalities. Unlike prior annotated datasets of parliamentary or video records, CitiLink-Minutes provides multilayer annotations and structured linkage of official written minutes. The dataset contains over one million tokens, with all personal identifiers de-identified. Each minute was manually annotated by two trained annotators and curated by an experienced linguist across three complementary dimensions: (1) metadata, (2) subjects of discussion, and (3) voting outcomes, totaling over 38,000 individual annotations. Released under FAIR principles and accompanied by baseline results on metadata extraction, topic classification, and vote labeling, CitiLink-Minutes demonstrates its potential for downstream NLP and IR tasks, while promoting transparent access to municipal decisions.
High-quality relevance judgements over large query sets are essential for evaluating Information Retrieval (IR) systems, yet manual annotation remains costly and time-consuming. Large Language Models (LLMs) have recently shown promise as automatic relevance assessors, but their reliability is still limited. Most existing approaches rely on zero-shot prompting or In-Context Learning (ICL) with a small number of labeled examples. However, standard ICL treats examples as independent instances and fails to explicitly capture the underlying relevance criteria of a topic, restricting its ability to generalize to unseen query-document pairs. To address this limitation, we introduce Relevance Context Learning (RCL), a novel framework that leverages human relevance judgements to explicitly model topic-specific relevance criteria. Rather than directly using labeled examples for in-context prediction, RCL first prompts an LLM (Instructor LLM) to analyze sets of judged query-document pairs and generate explicit narratives that describe what constitutes relevance for a given topic. These relevance narratives are then used as structured prompts to guide a second LLM (Assessor LLM) in producing relevance judgements. To evaluate RCL in a realistic data collection setting, we propose a hybrid pooling strategy in which a shallow depth-\textit{k} pool from participating systems is judged by human assessors, while the remaining documents are labeled by LLMs. Experimental results demonstrate that RCL substantially outperforms zero-shot prompting and consistently improves over standard ICL. Overall, our findings indicate that transforming relevance examples into explicit, context-aware relevance narratives is a more effective way of exploiting human judgements for LLM-based IR dataset construction.
Generating step-by-step "how-to" procedures is a key LLM capability: how-to advice is commonly requested in chatbots, and step-by-step planning is critical for reasoning over complex tasks. Yet, measuring and improving procedural validity at scale on real-world tasks remains challenging and understudied. To address this, we introduce How2Everything, a scalable framework to evaluate and improve goal-conditioned procedure generation. Our framework includes How2Mine, which mines 351K procedures from 980K web pages across 14 topics and readily scales to larger corpora. From this pool we build How2Bench, a 7K-example evaluation set balanced across topics. To reliably score model outputs, we develop How2Score, an evaluation protocol that uses an LLM judge to detect whether a generation contains any critical failure that would prevent achieving the goal. For low-cost, reproducible evaluation, we distill a frontier model into an open 8B model, achieving 80.5% agreement with human annotators. How2Bench reveals clear scaling trends across model sizes and training stages, providing signal early in pretraining. Finally, RL using How2Score as a reward improves performance on How2Bench by >10 points across three models without systematic regressions on standard benchmarks, with gains robust to superficial source-document memorization or format compliance. Taken together, How2Everything shows how pretraining web data can support a closed loop of capability evaluation and improvement at scale.
Self-interpretation methods prompt language models to describe their own internal states, but remain unreliable due to hyperparameter sensitivity. We show that training lightweight adapters on interpretability artifacts, while keeping the LM entirely frozen, yields reliable self-interpretation across tasks and model families. A scalar affine adapter with just $d_\text{model}+1$ parameters suffices: trained adapters generate sparse autoencoder feature labels that outperform the training labels themselves (71% vs 63% generation scoring at 70B scale), identify topics with 94% recall@1 versus 1% for untrained baselines, and decode bridge entities in multi-hop reasoning that appear in neither prompt nor response, surfacing implicit reasoning without chain-of-thought. The learned bias vector alone accounts for 85% of improvement, and simpler adapters generalize better than more expressive alternatives. Controlling for model knowledge via prompted descriptions, we find self-interpretation gains outpace capability gains from 7B to 72B parameters. Our results demonstrate that self-interpretation improves with scale, without modifying the model being interpreted.