Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Cochlear Implant (CI) surgery treats severe hearing loss by inserting an electrode array into the cochlea to stimulate the auditory nerve. An important step in this procedure is mastoidectomy, which removes part of the mastoid region of the temporal bone to provide surgical access. Accurate mastoidectomy shape prediction from preoperative imaging improves pre-surgical planning, reduces risks, and enhances surgical outcomes. Despite its importance, there are limited deep-learning-based studies regarding this topic due to the challenges of acquiring ground-truth labels. We address this gap by investigating self-supervised and weakly-supervised learning models to predict the mastoidectomy region without human annotations. We propose a hybrid self-supervised and weakly-supervised learning framework to predict the mastoidectomy region directly from preoperative CT scans, where the mastoid remains intact. Our hybrid method achieves a mean Dice score of 0.72 when predicting the complex and boundary-less mastoidectomy shape, surpassing state-of-the-art approaches and demonstrating strong performance. The method provides groundwork for constructing 3D postmastoidectomy surfaces directly from the corresponding preoperative CT scans. To our knowledge, this is the first work that integrating self-supervised and weakly-supervised learning for mastoidectomy shape prediction, offering a robust and efficient solution for CI surgical planning while leveraging 3D T-distribution loss in weakly-supervised medical imaging.
The increasing production of waste, driven by population growth, has created challenges in managing and recycling materials effectively. Manual waste sorting is a common practice; however, it remains inefficient for handling large-scale waste streams and presents health risks for workers. On the other hand, existing automated sorting approaches still struggle with the high variability, clutter, and visual complexity of real-world waste streams. The lack of real-world datasets for waste sorting is a major reason automated systems for this problem are underdeveloped. Accordingly, we introduce SortWaste, a densely annotated object detection dataset collected from a Material Recovery Facility. Additionally, we contribute to standardizing waste detection in sorting lines by proposing ClutterScore, an objective metric that gauges the scene's hardness level using a set of proxies that affect visual complexity (e.g., object count, class and size entropy, and spatial overlap). In addition to these contributions, we provide an extensive benchmark of state-of-the-art object detection models, detailing their results with respect to the hardness level assessed by the proposed metric. Despite achieving promising results (mAP of 59.7% in the plastic-only detection task), performance significantly decreases in highly cluttered scenes. This highlights the need for novel and more challenging datasets on the topic.
User-Defined Text Classification (UDTC) considers the challenge of classifying input text to user-specified, previously unseen classes, a setting that arises frequently in real-world applications such as enterprise analytics, content moderation, and domain-specific information retrieval. We propose a soft-contextualized encoder architecture for UDTC which contextualizes each candidate label with the label set and a static soft prompt representation of the input query. Training on diverse, multi-source datasets enables the model to generalize effectively to zero-shot classification over entirely unseen topic sets drawn from arbitrary domains. We evaluate the proposed architecture both on held-out in-distribution test data and on multiple unseen UDTC benchmarks. Across datasets, the model achieves state-of-the-art performance, consistently outperforming or matching the baselines.
Despite recent advances in understanding and leveraging long-range conversational memory, existing benchmarks still lack systematic evaluation of large language models(LLMs) across diverse memory dimensions, particularly in multi-session settings. In this work, we propose EvolMem, a new benchmark for assessing multi-session memory capabilities of LLMs and agent systems. EvolMem is grounded in cognitive psychology and encompasses both declarative and non-declarative memory, further decomposed into multiple fine-grained abilities. To construct the benchmark, we introduce a hybrid data synthesis framework that consists of topic-initiated generation and narrative-inspired transformations. This framework enables scalable generation of multi-session conversations with controllable complexity, accompanied by sample-specific evaluation guidelines. Extensive evaluation reveals that no LLM consistently outperforms others across all memory dimensions. Moreover, agent memory mechanisms do not necessarily enhance LLMs' capabilities and often exhibit notable efficiency limitations. Data and code will be released at https://github.com/shenye7436/EvolMem.
Volunteer moderators play a crucial role in sustaining online dialogue, but they often disagree about what should or should not be allowed. In this paper, we study the complexity of content moderation with a focus on disagreements between moderators, which we term the ``gray area'' of moderation. Leveraging 5 years and 4.3 million moderation log entries from 24 subreddits of different topics and sizes, we characterize how gray area, or disputed cases, differ from undisputed cases. We show that one-in-seven moderation cases are disputed among moderators, often addressing transgressions where users' intent is not directly legible, such as in trolling and brigading, as well as tensions around community governance. This is concerning, as almost half of all gray area cases involved automated moderation decisions. Through information-theoretic evaluations, we demonstrate that gray area cases are inherently harder to adjudicate than undisputed cases and show that state-of-the-art language models struggle to adjudicate them. We highlight the key role of expert human moderators in overseeing the moderation process and provide insights about the challenges of current moderation processes and tools.
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.
Tracking objects that move within dynamic environments is a core challenge in robotics. Recent research has advanced this topic significantly; however, many existing approaches remain inefficient due to their reliance on heavy foundation models. To address this limitation, we propose LOST-3DSG, a lightweight open-vocabulary 3D scene graph designed to track dynamic objects in real-world environments. Our method adopts a semantic approach to entity tracking based on word2vec and sentence embeddings, enabling an open-vocabulary representation while avoiding the necessity of storing dense CLIP visual features. As a result, LOST-3DSG achieves superior performance compared to approaches that rely on high-dimensional visual embeddings. We evaluate our method through qualitative and quantitative experiments conducted in a real 3D environment using a TIAGo robot. The results demonstrate the effectiveness and efficiency of LOST-3DSG in dynamic object tracking. Code and supplementary material are publicly available on the project website at https://lab-rococo-sapienza.github.io/lost-3dsg/.
With the development of teleconferencing and in-vehicle voice assistants, far-field multi-speaker speech recognition has become a hot research topic. Recently, a multi-channel transformer (MCT) has been proposed, which demonstrates the ability of the transformer to model far-field acoustic environments. However, MCT cannot encode high-dimensional acoustic features for each speaker from mixed input audio because of the interference between speakers. Based on these, we propose the multi-channel multi-speaker transformer (M2Former) for far-field multi-speaker ASR in this paper. Experiments on the SMS-WSJ benchmark show that the M2Former outperforms the neural beamformer, MCT, dual-path RNN with transform-average-concatenate and multi-channel deep clustering based end-to-end systems by 9.2%, 14.3%, 24.9%, and 52.2% respectively, in terms of relative word error rate reduction.
Explainable artificial intelligence (xAI) has gained significant attention in recent years. Among other things, explainablility for deep neural networks has been a topic of intensive research due to the meteoric rise in prominence of deep neural networks and their "black-box" nature. xAI approaches can be characterized along different dimensions such as their scope (global versus local explanations) or underlying methodologies (statistic-based versus rule-based strategies). Methods generating global explanations aim to provide reasoning process applicable to all possible output classes while local explanation methods focus only on a single, specific class. SHAP (SHapley Additive exPlanations), a well-known statistical technique, identifies important features of a network. Deep neural network rule extraction method constructs IF-THEN rules that link input conditions to a class. Another approach focuses on generating counterfactuals which help explain how small changes to an input can affect the model's predictions. However, these techniques primarily focus on the input-output relationship and thus neglect the structure of the network in explanation generation. In this work, we propose xDNN(ASP), an explanation generation system for deep neural networks that provides global explanations. Given a neural network model and its training data, xDNN(ASP) extracts a logic program under answer set semantics that-in the ideal case-represents the trained model, i.e., answer sets of the extracted program correspond one-to-one to input-output pairs of the network. We demonstrate experimentally, using two synthetic datasets, that not only the extracted logic program maintains a high-level of accuracy in the prediction task, but it also provides valuable information for the understanding of the model such as the importance of features as well as the impact of hidden nodes on the prediction. The latter can be used as a guide for reducing the number of nodes used in hidden layers, i.e., providing a means for optimizing the network.
Traditional Retrieval-Augmented Generation (RAG) effectively supports single-hop question answering with large language models but faces significant limitations in multi-hop question answering tasks, which require combining evidence from multiple documents. Existing chunk-based retrieval often provides irrelevant and logically incoherent context, leading to incomplete evidence chains and incorrect reasoning during answer generation. To address these challenges, we propose SentGraph, a sentence-level graph-based RAG framework that explicitly models fine-grained logical relationships between sentences for multi-hop question answering. Specifically, we construct a hierarchical sentence graph offline by first adapting Rhetorical Structure Theory to distinguish nucleus and satellite sentences, and then organizing them into topic-level subgraphs with cross-document entity bridges. During online retrieval, SentGraph performs graph-guided evidence selection and path expansion to retrieve fine-grained sentence-level evidence. Extensive experiments on four multi-hop question answering benchmarks demonstrate the effectiveness of SentGraph, validating the importance of explicitly modeling sentence-level logical dependencies for multi-hop reasoning.