Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Large language models (LLMs) are increasingly deployed in security-sensitive applications, where they must follow system- or developer-specified instructions that define the intended task behavior, while completing benign user requests. When adversarial instructions appear in user queries or externally retrieved content, models may override intended logic. Recent defenses rely on supervised fine-tuning with benign and malicious labels. Although these methods achieve high attack rejection rates, we find that they rely on narrow correlations in defense data rather than harmful intent, leading to systematic rejection of safe inputs. We analyze three recurring shortcut behaviors induced by defense fine-tuning. \emph{Position bias} arises when benign content placed later in a prompt is rejected at much higher rates; across reasoning benchmarks, suffix-task rejection rises from below \textbf{10\%} to as high as \textbf{90\%}. \emph{Token trigger bias} occurs when strings common in attack data raise rejection probability even in benign contexts; inserting a single trigger token increases false refusals by up to \textbf{50\%}. \emph{Topic generalization bias} reflects poor generalization beyond the defense data distribution, with defended models suffering test-time accuracy drops of up to \textbf{40\%}. These findings suggest that current prompt-injection defenses frequently respond to attack-like surface patterns rather than the underlying intent. We introduce controlled diagnostic datasets and a systematic evaluation across two base models and multiple defense pipelines, highlighting limitations of supervised fine-tuning for reliable LLM security.
Intelligent interfaces increasingly use large language models to summarize user-generated content, yet these summaries emphasize what is mentioned while overlooking what is missing. This presence bias can mislead users who rely on summaries to make decisions. We present Domain Informed Summarization through Contrast (DiSCo), an expectation-based computational approach that makes absences visible by comparing each entity's content with domain topical expectations captured in reference distributions of aspects typically discussed in comparable accommodations. This comparison identifies aspects that are either unusually emphasized or missing relative to domain norms and integrates them into the generated text. In a user study across three accommodation domains, namely ski, beach, and city center, DiSCo summaries were rated as more detailed and useful for decision making than baseline large language model summaries, although slightly harder to read. The findings show that modeling expectations reduces presence bias and improves both transparency and decision support in intelligent summarization interfaces.
LLM-based client simulation has emerged as a promising tool for training novice counselors and evaluating automated counseling systems. However, existing client simulation approaches face three key challenges: (1) limited diversity and realism in client profiles, (2) the lack of a principled framework for modeling realistic client behaviors, and (3) a scarcity in Chinese-language settings. To address these limitations, we propose PsyCLIENT, a novel simulation framework grounded in conversational trajectory modeling. By conditioning LLM generation on predefined real-world trajectories that incorporate explicit behavior labels and content constraints, our approach ensures diverse and realistic interactions. We further introduce PsyCLIENT-CP, the first open-source Chinese client profile dataset, covering 60 distinct counseling topics. Comprehensive evaluations involving licensed professional counselors demonstrate that PsyCLIENT significantly outperforms baselines in terms of authenticity and training effectiveness. Notably, the simulated clients are nearly indistinguishable from human clients, achieving an about 95\% expert confusion rate in discrimination tasks. These findings indicate that conversational trajectory modeling effectively bridges the gap between theoretical client profiles and dynamic, realistic simulations, offering a robust solution for mental health education and research. Code and data will be released to facilitate future research in mental health counseling.
Large Language Models (LLMs) often exhibit increased response latency and degraded answer quality as dialogue length grows, making effective context management essential. However, existing methods rely on extra LLM calls to build memory or perform offline memory construction without considering the current user utterance, which can introduce inefficiencies or disrupt conversational continuity. We introduce DyCP, a lightweight context management method that dynamically segment and retrieve relevant memory at query time. It preserves the sequential structure of dialogue without predefined topic boundaries and supports efficient, adaptive context retrieval. Across three long-form dialogue benchmarks, LoCoMo, MT-Bench+, and SCM4LLMs, and multiple LLMs, DyCP consistently improves answer quality while reducing response latency. We also examine the gap between modern LLMs' expanded context windows and their actual long-context processing capacity, highlighting the continued importance of effective context management.
Automatic License Plate Recognition is a frequent research topic due to its wide-ranging practical applications. While recent studies use synthetic images to improve License Plate Recognition (LPR) results, there remain several limitations in these efforts. This work addresses these constraints by comprehensively exploring the integration of real and synthetic data to enhance LPR performance. We subject 16 Optical Character Recognition (OCR) models to a benchmarking process involving 12 public datasets acquired from various regions. Several key findings emerge from our investigation. Primarily, the massive incorporation of synthetic data substantially boosts model performance in both intra- and cross-dataset scenarios. We examine three distinct methodologies for generating synthetic data: template-based generation, character permutation, and utilizing a Generative Adversarial Network (GAN) model, each contributing significantly to performance enhancement. The combined use of these methodologies demonstrates a notable synergistic effect, leading to end-to-end results that surpass those reached by state-of-the-art methods and established commercial systems. Our experiments also underscore the efficacy of synthetic data in mitigating challenges posed by limited training data, enabling remarkable results to be achieved even with small fractions of the original training data. Finally, we investigate the trade-off between accuracy and speed among different models, identifying those that strike the optimal balance in each intra-dataset and cross-dataset settings.
Large language models (LLMs) are expected to be trained to act as agents in various real-world environments, but this process relies on rich and varied tool-interaction sandboxes. However, access to real systems is often restricted; LLM-simulated environments are prone to hallucinations and inconsistencies; and manually built sandboxes are hard to scale. In this paper, we propose EnvScaler, an automated framework for scalable tool-interaction environments via programmatic synthesis. EnvScaler comprises two components. First, SkelBuilder constructs diverse environment skeletons through topic mining, logic modeling, and quality evaluation. Then, ScenGenerator generates multiple task scenarios and rule-based trajectory validation functions for each environment. With EnvScaler, we synthesize 191 environments and about 7K scenarios, and apply them to Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) for Qwen3 series models. Results on three benchmarks show that EnvScaler significantly improves LLMs' ability to solve tasks in complex environments involving multi-turn, multi-tool interactions. We release our code and data at https://github.com/RUC-NLPIR/EnvScaler.
Large Language Models (LLMs) are increasingly deployed in high-stakes contexts where their outputs influence real-world decisions. However, evaluating bias in LLM outputs remains methodologically challenging due to sensitivity to prompt wording, limited multilingual coverage, and the lack of standardized metrics that enable reliable comparison across models. This paper introduces BiasLab, an open-source, model-agnostic evaluation framework for quantifying output-level (extrinsic) bias through a multilingual, robustness-oriented experimental design. BiasLab constructs mirrored probe pairs under a strict dual-framing scheme: an affirmative assertion favoring Target A and a reverse assertion obtained by deterministic target substitution favoring Target B, while preserving identical linguistic structure. To reduce dependence on prompt templates, BiasLab performs repeated evaluation under randomized instructional wrappers and enforces a fixed-choice Likert response format to maximize comparability across models and languages. Responses are normalized into agreement labels using an LLM-based judge, aligned for polarity consistency across framings, and aggregated into quantitative bias indicators with descriptive statistics including effect sizes and neutrality rates. The framework supports evaluation across diverse bias axes, including demographic, cultural, political, and geopolitical topics, and produces reproducible artifacts such as structured reports and comparative visualizations. BiasLab contributes a standardized methodology for cross-lingual and framing-sensitive bias measurement that complements intrinsic and dataset-based audits, enabling researchers and institutions to benchmark robustness and make better-informed deployment decisions.
High-fidelity agent initialization is crucial for credible Agent-Based Modeling across diverse domains. A robust framework should be Topic-Adaptive, capturing macro-level joint distributions while ensuring micro-level individual rationality. Existing approaches fall into two categories: static data-based retrieval methods that fail to adapt to unseen topics absent from the data, and LLM-based generation methods that lack macro-level distribution awareness, resulting in inconsistencies between micro-level persona attributes and reality. To address these problems, we propose HAG, a Hierarchical Agent Generation framework that formalizes population generation as a two-stage decision process. Firstly, utilizing a World Knowledge Model to infer hierarchical conditional probabilities to construct the Topic-Adaptive Tree, achieving macro-level distribution alignment. Then, grounded real-world data, instantiation and agentic augmentation are carried out to ensure micro-level consistency. Given the lack of specialized evaluation, we establish a multi-domain benchmark and a comprehensive PACE evaluation framework. Extensive experiments show that HAG significantly outperforms representative baselines, reducing population alignment errors by an average of 37.7% and enhancing sociological consistency by 18.8%.
Large language models (LLMs) increasingly rely on retrieving information from external corpora. This creates a new attack surface: indirect prompt injection (IPI), where hidden instructions are planted in the corpora and hijack model behavior once retrieved. Previous studies have highlighted this risk but often avoid the hardest step: ensuring that malicious content is actually retrieved. In practice, unoptimized IPI is rarely retrieved under natural queries, which leaves its real-world impact unclear. We address this challenge by decomposing the malicious content into a trigger fragment that guarantees retrieval and an attack fragment that encodes arbitrary attack objectives. Based on this idea, we design an efficient and effective black-box attack algorithm that constructs a compact trigger fragment to guarantee retrieval for any attack fragment. Our attack requires only API access to embedding models, is cost-efficient (as little as $0.21 per target user query on OpenAI's embedding models), and achieves near-100% retrieval across 11 benchmarks and 8 embedding models (including both open-source models and proprietary services). Based on this attack, we present the first end-to-end IPI exploits under natural queries and realistic external corpora, spanning both RAG and agentic systems with diverse attack objectives. These results establish IPI as a practical and severe threat: when a user issued a natural query to summarize emails on frequently asked topics, a single poisoned email was sufficient to coerce GPT-4o into exfiltrating SSH keys with over 80% success in a multi-agent workflow. We further evaluate several defenses and find that they are insufficient to prevent the retrieval of malicious text, highlighting retrieval as a critical open vulnerability.
This paper introduces an algorithmic framework for conducting systematic literature reviews (SLRs), designed to improve efficiency, reproducibility, and selection quality assessment in the literature review process. The proposed method integrates Natural Language Processing (NLP) techniques, clustering algorithms, and interpretability tools to automate and structure the selection and analysis of academic publications. The framework is applied to a case study focused on financial narratives, an emerging area in financial economics that examines how structured accounts of economic events, formed by the convergence of individual interpretations, influence market dynamics and asset prices. Drawing from the Scopus database of peer-reviewed literature, the review highlights research efforts to model financial narratives using various NLP techniques. Results reveal that while advances have been made, the conceptualization of financial narratives remains fragmented, often reduced to sentiment analysis, topic modeling, or their combination, without a unified theoretical framework. The findings underscore the value of more rigorous and dynamic narrative modeling approaches and demonstrate the effectiveness of the proposed algorithmic SLR methodology.