What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Oct 10, 2025
Abstract:Object detection in biomedical settings is fundamentally constrained by the scarcity of labeled data and the frequent emergence of novel or rare categories. We present FSP-DETR, a unified detection framework that enables robust few-shot detection, open-set recognition, and generalization to unseen biomedical tasks within a single model. Built upon a class-agnostic DETR backbone, our approach constructs class prototypes from original support images and learns an embedding space using augmented views and a lightweight transformer decoder. Training jointly optimizes a prototype matching loss, an alignment-based separation loss, and a KL divergence regularization to improve discriminative feature learning and calibration under scarce supervision. Unlike prior work that tackles these tasks in isolation, FSP-DETR enables inference-time flexibility to support unseen class recognition, background rejection, and cross-task adaptation without retraining. We also introduce a new ova species detection benchmark with 20 parasite classes and establish standardized evaluation protocols. Extensive experiments across ova, blood cell, and malaria detection tasks demonstrate that FSP-DETR significantly outperforms prior few-shot and prototype-based detectors, especially in low-shot and open-set scenarios.
* 10 pages, 3 Figures, 5 Tables. Under Review
Via

Oct 10, 2025
Abstract:Efficient inference with transformer-based models remains a challenge, especially in vision tasks like object detection. We analyze the inherent sparsity in the MLP layers of DETR and introduce two methods to exploit it without retraining. First, we propose Static Indicator-Based Sparsification (SIBS), a heuristic method that predicts neuron inactivity based on fixed activation patterns. While simple, SIBS offers limited gains due to the input-dependent nature of sparsity. To address this, we introduce Micro-Gated Sparsification (MGS), a lightweight gating mechanism trained on top of a pretrained DETR. MGS predicts dynamic sparsity using a small linear layer and achieves up to 85 to 95% activation sparsity. Experiments on the COCO dataset show that MGS maintains or even improves performance while significantly reducing computation. Our method offers a practical, input-adaptive approach to sparsification, enabling efficient deployment of pretrained vision transformers without full model retraining.
* 6 pages 4 figures and 4 tables , accepted for 2025 IEEE INTERNATIONAL
WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, AUG. 31 to SEP. 3, 2025,
ISTANBUL, TURKEY
Via

Oct 10, 2025
Abstract:Small object detection in aerial images suffers from severe information degradation during feature extraction due to limited pixel representations, where shallow spatial details fail to align effectively with semantic information, leading to frequent misses and false positives. Existing FPN-based methods attempt to mitigate these losses through post-processing enhancements, but the reconstructed details often deviate from the original image information, impeding their fusion with semantic content. To address this limitation, we propose PRNet, a real-time detection framework that prioritizes the preservation and efficient utilization of primitive shallow spatial features to enhance small object representations. PRNet achieves this via two modules:the Progressive Refinement Neck (PRN) for spatial-semantic alignment through backbone reuse and iterative refinement, and the Enhanced SliceSamp (ESSamp) for preserving shallow information during downsampling via optimized rearrangement and convolution. Extensive experiments on the VisDrone, AI-TOD, and UAVDT datasets demonstrate that PRNet outperforms state-of-the-art methods under comparable computational constraints, achieving superior accuracy-efficiency trade-offs.
Via

Oct 09, 2025
Abstract:Collaborative visual perception methods have gained widespread attention in the autonomous driving community in recent years due to their ability to address sensor limitation problems. However, the absence of explicit depth information often makes it difficult for camera-based perception systems, e.g., 3D object detection, to generate accurate predictions. To alleviate the ambiguity in depth estimation, we propose RayFusion, a ray-based fusion method for collaborative visual perception. Using ray occupancy information from collaborators, RayFusion reduces redundancy and false positive predictions along camera rays, enhancing the detection performance of purely camera-based collaborative perception systems. Comprehensive experiments show that our method consistently outperforms existing state-of-the-art models, substantially advancing the performance of collaborative visual perception. The code is available at https://github.com/wangsh0111/RayFusion.
* Accepted by NeurIPS2025
Via

Oct 08, 2025
Abstract:With increasing processing power, deploying AI models for remote sensing directly onboard satellites is becoming feasible. However, new constraints arise, mainly when using raw, unprocessed sensor data instead of preprocessed ground-based products. While current solutions primarily rely on preprocessed sensor images, few approaches directly leverage raw data. This study investigates the effects of utilising raw data on deep learning models for object detection and classification tasks. We introduce a simulation workflow to generate raw-like products from high-resolution L1 imagery, enabling systemic evaluation. Two object detection models (YOLOv11s and YOLOX-S) are trained on both raw and L1 datasets, and their performance is compared using standard detection metrics and explainability tools. Results indicate that while both models perform similarly at low to medium confidence thresholds, the model trained on raw data struggles with object boundary identification at high confidence levels. It suggests that adapting AI architectures with improved contouring methods can enhance object detection on raw images, improving onboard AI for remote sensing.
* Preprint: European Data Handling & Data Processing Conference (EDHPC)
2025
Via

Oct 08, 2025
Abstract:LiDAR-based 3D object detectors are fundamental to autonomous driving, where failing to detect objects poses severe safety risks. Developing effective 3D adversarial attacks is essential for thoroughly testing these detection systems and exposing their vulnerabilities before real-world deployment. However, existing adversarial attacks that add optimized perturbations to 3D points have two critical limitations: they rarely cause complete object disappearance and prove difficult to implement in physical environments. We introduce the text-to-3D adversarial generation method, a novel approach enabling physically realizable attacks that can generate 3D models of objects truly invisible to LiDAR detectors and be easily realized in the real world. Specifically, we present the first empirical study that systematically investigates the factors influencing detection vulnerability by manipulating the topology, connectivity, and intensity of individual pedestrian 3D models and combining pedestrians with multiple objects within the CARLA simulation environment. Building on the insights, we propose the physically-informed text-to-3D adversarial generation (Phy3DAdvGen) that systematically optimizes text prompts by iteratively refining verbs, objects, and poses to produce LiDAR-invisible pedestrians. To ensure physical realizability, we construct a comprehensive object pool containing 13 3D models of real objects and constrain Phy3DAdvGen to generate 3D objects based on combinations of objects in this set. Extensive experiments demonstrate that our approach can generate 3D pedestrians that evade six state-of-the-art (SOTA) LiDAR 3D detectors in both CARLA simulation and physical environments, thereby highlighting vulnerabilities in safety-critical applications.
Via

Oct 06, 2025
Abstract:Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_\alpha$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.
Via

Oct 10, 2025
Abstract:Unsupervised anomaly detection is often framed around two widely studied paradigms. Deep one-class classification, exemplified by Deep SVDD, learns compact latent representations of normality, while density estimators realized by normalizing flows directly model the likelihood of nominal data. In this work, we show that uniformly scaling flows (USFs), normalizing flows with a constant Jacobian determinant, precisely connect these approaches. Specifically, we prove how training a USF via maximum-likelihood reduces to a Deep SVDD objective with a unique regularization that inherently prevents representational collapse. This theoretical bridge implies that USFs inherit both the density faithfulness of flows and the distance-based reasoning of one-class methods. We further demonstrate that USFs induce a tighter alignment between negative log-likelihood and latent norm than either Deep SVDD or non-USFs, and how recent hybrid approaches combining one-class objectives with VAEs can be naturally extended to USFs. Consequently, we advocate using USFs as a drop-in replacement for non-USFs in modern anomaly detection architectures. Empirically, this substitution yields consistent performance gains and substantially improved training stability across multiple benchmarks and model backbones for both image-level and pixel-level detection. These results unify two major anomaly detection paradigms, advancing both theoretical understanding and practical performance.
Via

Oct 06, 2025
Abstract:This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
* 8 pages, 8 figures
Via

Oct 06, 2025
Abstract:In Kigali, Rwanda, motorcycle taxis are a primary mode of transportation, often navigating unpredictably and disregarding traffic rules, posing significant challenges for autonomous driving systems. This study compares four object detection models--YOLOv5, Faster R-CNN, SSD, and RetinaNet--for motorbike detection using a custom dataset of 198 images collected in Kigali. Implemented in PyTorch with transfer learning, the models were evaluated for accuracy, localization, and inference speed to assess their suitability for real-time navigation in resource-constrained settings. We identify implementation challenges, including dataset limitations and model complexities, and recommend simplified architectures for future work to enhance accessibility for autonomous systems in developing countries like Rwanda.
* 3 figures, 2 tables
Via
