Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
Apr 05, 2025
Abstract:Transformer models have revolutionized sequential learning across various domains, yet their self-attention mechanism incurs quadratic computational cost, posing limitations for real-time and resource-constrained tasks. To address this, we propose Quantum Adaptive Self-Attention (QASA), a novel hybrid architecture that enhances classical Transformer models with a quantum attention mechanism. QASA replaces dot-product attention with a parameterized quantum circuit (PQC) that adaptively captures inter-token relationships in the quantum Hilbert space. Additionally, a residual quantum projection module is introduced before the feedforward network to further refine temporal features. Our design retains classical efficiency in earlier layers while injecting quantum expressiveness in the final encoder block, ensuring compatibility with current NISQ hardware. Experiments on synthetic time-series tasks demonstrate that QASA achieves faster convergence and superior generalization compared to both standard Transformers and reduced classical variants. Preliminary complexity analysis suggests potential quantum advantages in gradient computation, opening new avenues for efficient quantum deep learning models.
Via

Apr 25, 2025
Abstract:Traditional human reliability analysis (HRA) methods, such as IDHEAS-ECA, rely on expert judgment and empirical rules that often overlook the cognitive underpinnings of human error. Moreover, conducting human-in-the-loop experiments for advanced nuclear power plants is increasingly impractical due to novel interfaces and limited operational data. This study proposes a cognitive-mechanistic framework (COGMIF) that enhances the IDHEAS-ECA methodology by integrating an ACT-R-based human digital twin (HDT) with TimeGAN-augmented simulation. The ACT-R model simulates operator cognition, including memory retrieval, goal-directed procedural reasoning, and perceptual-motor execution, under high-fidelity scenarios derived from a high-temperature gas-cooled reactor (HTGR) simulator. To overcome the resource constraints of large-scale cognitive modeling, TimeGAN is trained on ACT-R-generated time-series data to produce high-fidelity synthetic operator behavior datasets. These simulations are then used to drive IDHEAS-ECA assessments, enabling scalable, mechanism-informed estimation of human error probabilities (HEPs). Comparative analyses with SPAR-H and sensitivity assessments demonstrate the robustness and practical advantages of the proposed COGMIF. Finally, procedural features are mapped onto a Bayesian network to quantify the influence of contributing factors, revealing key drivers of operational risk. This work offers a credible and computationally efficient pathway to integrate cognitive theory into industrial HRA practices.
Via

Apr 04, 2025
Abstract:Given the growing environmental challenges, accurate monitoring and prediction of changes in water bodies are essential for sustainable management and conservation. The Continuous Monitoring of Land Disturbance (COLD) algorithm provides a valuable tool for real-time analysis of land changes, such as deforestation, urban expansion, agricultural activities, and natural disasters. This capability enables timely interventions and more informed decision-making. This paper assesses the effectiveness of the algorithm to estimate water bodies and track pixel-level water trends over time. Our findings indicate that COLD-derived data can reliably estimate estimate water frequency during stable periods and delineate water bodies. Furthermore, it enables the evaluation of trends in water areas after disturbances, allowing for the determination of whether water frequency increases, decreases, or remains constant.
Via

Apr 27, 2025
Abstract:High-quality preference data is essential for aligning foundation models with human values through preference learning. However, manual annotation of such data is often time-consuming and costly. Recent methods often adopt a self-rewarding approach, where the target model generates and annotates its own preference data, but this can lead to inaccuracies since the reward model shares weights with the target model, thereby amplifying inherent biases. To address these issues, we propose Anyprefer, a framework designed to synthesize high-quality preference data for aligning the target model. Anyprefer frames the data synthesis process as a cooperative two-player Markov Game, where the target model and the judge model collaborate together. Here, a series of external tools are introduced to assist the judge model in accurately rewarding the target model's responses, mitigating biases in the rewarding process. In addition, a feedback mechanism is introduced to optimize prompts for both models, enhancing collaboration and improving data quality. The synthesized data is compiled into a new preference dataset, Anyprefer-V1, consisting of 58K high-quality preference pairs. Extensive experiments show that Anyprefer significantly improves model alignment performance across four main applications, covering 21 datasets, achieving average improvements of 18.55% in five natural language generation datasets, 3.66% in nine vision-language understanding datasets, 30.05% in three medical image analysis datasets, and 16.00% in four visuo-motor control tasks.
Via

Apr 14, 2025
Abstract:Accurate prediction of non-dispatchable renewable energy sources is essential for grid stability and price prediction. Regional power supply forecasts are usually indirect through a bottom-up approach of plant-level forecasts, incorporate lagged power values, and do not use the potential of spatially resolved data. This study presents a comprehensive methodology for predicting solar and wind power production at country scale in France using machine learning models trained with spatially explicit weather data combined with spatial information about production sites capacity. A dataset is built spanning from 2012 to 2023, using daily power production data from RTE (the national grid operator) as the target variable, with daily weather data from ERA5, production sites capacity and location, and electricity prices as input features. Three modeling approaches are explored to handle spatially resolved weather data: spatial averaging over the country, dimension reduction through principal component analysis, and a computer vision architecture to exploit complex spatial relationships. The study benchmarks state-of-the-art machine learning models as well as hyperparameter tuning approaches based on cross-validation methods on daily power production data. Results indicate that cross-validation tailored to time series is best suited to reach low error. We found that neural networks tend to outperform traditional tree-based models, which face challenges in extrapolation due to the increasing renewable capacity over time. Model performance ranges from 4% to 10% in nRMSE for midterm horizon, achieving similar error metrics to local models established at a single-plant level, highlighting the potential of these methods for regional power supply forecasting.
* 24 pages, 4 tables, 18 figures
Via

Mar 21, 2025
Abstract:Understanding the relationship between textual news and time-series evolution is a critical yet under-explored challenge in applied data science. While multimodal learning has gained traction, existing multimodal time-series datasets fall short in evaluating cross-modal reasoning and complex question answering, which are essential for capturing complex interactions between narrative information and temporal patterns. To bridge this gap, we introduce Multimodal Time Series Benchmark (MTBench), a large-scale benchmark designed to evaluate large language models (LLMs) on time series and text understanding across financial and weather domains. MTbench comprises paired time series and textual data, including financial news with corresponding stock price movements and weather reports aligned with historical temperature records. Unlike existing benchmarks that focus on isolated modalities, MTbench provides a comprehensive testbed for models to jointly reason over structured numerical trends and unstructured textual narratives. The richness of MTbench enables formulation of diverse tasks that require a deep understanding of both text and time-series data, including time-series forecasting, semantic and technical trend analysis, and news-driven question answering (QA). These tasks target the model's ability to capture temporal dependencies, extract key insights from textual context, and integrate cross-modal information. We evaluate state-of-the-art LLMs on MTbench, analyzing their effectiveness in modeling the complex relationships between news narratives and temporal patterns. Our findings reveal significant challenges in current models, including difficulties in capturing long-term dependencies, interpreting causality in financial and weather trends, and effectively fusing multimodal information.
* 14 pages
Via

Apr 16, 2025
Abstract:The YOLO (You Only Look Once) series has been a leading framework in real-time object detection, consistently improving the balance between speed and accuracy. However, integrating attention mechanisms into YOLO has been challenging due to their high computational overhead. YOLOv12 introduces a novel approach that successfully incorporates attention-based enhancements while preserving real-time performance. This paper provides a comprehensive review of YOLOv12's architectural innovations, including Area Attention for computationally efficient self-attention, Residual Efficient Layer Aggregation Networks for improved feature aggregation, and FlashAttention for optimized memory access. Additionally, we benchmark YOLOv12 against prior YOLO versions and competing object detectors, analyzing its improvements in accuracy, inference speed, and computational efficiency. Through this analysis, we demonstrate how YOLOv12 advances real-time object detection by refining the latency-accuracy trade-off and optimizing computational resources.
Via

Apr 24, 2025
Abstract:Long-term time series forecasting plays a pivotal role in various real-world applications. Despite recent advancements and the success of different architectures, forecasting is often challenging due to non-stationary nature of the real-world data, which frequently exhibit distribution shifts and temporal changes in statistical properties like mean and variance over time. Previous studies suggest that this inherent variability complicates forecasting, limiting the performance of many models by leading to loss of non-stationarity and resulting in over-stationarization (Liu, Wu, Wang and Long, 2022). To address this challenge, we introduce a novel architecture, ChoronoAdaptive Network (CANet), inspired by style-transfer techniques. The core of CANet is the Non-stationary Adaptive Normalization module, seamlessly integrating the Style Blending Gate and Adaptive Instance Normalization (AdaIN) (Huang and Belongie, 2017). The Style Blending Gate preserves and reintegrates non-stationary characteristics, such as mean and standard deviation, by blending internal and external statistics, preventing over-stationarization while maintaining essential temporal dependencies. Coupled with AdaIN, which dynamically adapts the model to statistical changes, this approach enhances predictive accuracy under non-stationary conditions. CANet also employs multi-resolution patching to handle short-term fluctuations and long-term trends, along with Fourier analysis-based adaptive thresholding to reduce noise. A Stacked Kronecker Product Layer further optimizes the model's efficiency while maintaining high performance. Extensive experiments on real-world datasets validate CANet's superiority over state-of-the-art methods, achieving a 42% reduction in MSE and a 22% reduction in MAE. The source code is publicly available at https://github.com/mertsonmezer/CANet.
Via

Mar 30, 2025
Abstract:Time series data are everywhere -- from finance to healthcare -- and each domain brings its own unique complexities and structures. While advanced models like Transformers and graph neural networks (GNNs) have gained popularity in time series forecasting, largely due to their success in tasks like language modeling, their added complexity is not always necessary. In our work, we show that simple feedforward neural networks (SFNNs) can achieve performance on par with, or even exceeding, these state-of-the-art models, while being simpler, smaller, faster, and more robust. Our analysis indicates that, in many cases, univariate SFNNs are sufficient, implying that modeling interactions between multiple series may offer only marginal benefits. Even when inter-series relationships are strong, a basic multivariate SFNN still delivers competitive results. We also examine some key design choices and offer guidelines on making informed decisions. Additionally, we critique existing benchmarking practices and propose an improved evaluation protocol. Although SFNNs may not be optimal for every situation (hence the ``almost'' in our title) they serve as a strong baseline that future time series forecasting methods should always be compared against.
Via

Mar 26, 2025
Abstract:The explosion of Time Series (TS) data, driven by advancements in technology, necessitates sophisticated analytical methods. Modern management systems increasingly rely on analyzing this data, highlighting the importance of effcient processing techniques. State-of-the-art Machine Learning (ML) approaches for TS analysis and forecasting are becoming prevalent. This paper briefly describes and compiles suitable algorithms for TS regression task. We compare these algorithms against each other and the classic ARIMA method using diverse datasets: complete data, data with outliers, and data with missing values. The focus is on forecasting accuracy, particularly for long-term predictions. This research aids in selecting the most appropriate algorithm based on forecasting needs and data characteristics.
Via
