Text classification is the process of categorizing text documents into predefined categories or labels.
Phishing and related cyber threats are becoming more varied and technologically advanced. Among these, email-based phishing remains the most dominant and persistent threat. These attacks exploit human vulnerabilities to disseminate malware or gain unauthorized access to sensitive information. Deep learning (DL) models, particularly transformer-based models, have significantly enhanced phishing mitigation through their contextual understanding of language. However, some recent threats, specifically Artificial Intelligence (AI)-generated phishing attacks, are reducing the overall system resilience of phishing detectors. In response, adversarial training has shown promise against AI-generated phishing threats. This study presents a hybrid approach that uses DistilBERT, a smaller, faster, and lighter version of the BERT transformer model for email classification. Robustness against text-based adversarial perturbations is reinforced using Fast Gradient Method (FGM) adversarial training. Furthermore, the framework integrates the LIME Explainable AI (XAI) technique to enhance the transparency of the DistilBERT architecture. The framework also uses the Flan-T5-small language model from Hugging Face to generate plain-language security narrative explanations for end-users. This combined approach ensures precise phishing classification while providing easily understandable justifications for the model's decisions.




Multi-label sentiment classification plays a vital role in natural language processing by detecting multiple emotions within a single text. However, existing datasets like GoEmotions often suffer from severe class imbalance, which hampers model performance, especially for underrepresented emotions. To address this, we constructed a balanced multi-label sentiment dataset by integrating the original GoEmotions data, emotion-labeled samples from Sentiment140 using a RoBERTa-base-GoEmotions model, and manually annotated texts generated by GPT-4 mini. Our data balancing strategy ensured an even distribution across 28 emotion categories. Based on this dataset, we developed an enhanced multi-label classification model that combines pre-trained FastText embeddings, convolutional layers for local feature extraction, bidirectional LSTM for contextual learning, and an attention mechanism to highlight sentiment-relevant words. A sigmoid-activated output layer enables multi-label prediction, and mixed precision training improves computational efficiency. Experimental results demonstrate significant improvements in accuracy, precision, recall, F1-score, and AUC compared to models trained on imbalanced data, highlighting the effectiveness of our approach.
Large vision-language models, such as CLIP, have shown strong zero-shot classification performance by aligning images and text in a shared embedding space. However, CLIP models often develop multimodal spurious biases, which is the undesirable tendency to rely on spurious features. For example, CLIP may infer object types in images based on frequently co-occurring backgrounds rather than the object's core features. This bias significantly impairs the robustness of pre-trained CLIP models on out-of-distribution data, where such cross-modal associations no longer hold. Existing methods for mitigating multimodal spurious bias typically require fine-tuning on downstream data or prior knowledge of the bias, which undermines the out-of-the-box usability of CLIP. In this paper, we first theoretically analyze the impact of multimodal spurious bias in zero-shot classification. Based on this insight, we propose Spuriousness-Aware Guided Exploration (SAGE), a simple and effective method that mitigates spurious bias through guided prompt selection. SAGE requires no training, fine-tuning, or external annotations. It explores a space of prompt templates and selects the prompts that induce the largest semantic separation between classes, thereby improving worst-group robustness. Extensive experiments on four real-world benchmark datasets and five popular backbone models demonstrate that SAGE consistently improves zero-shot performance and generalization, outperforming previous zero-shot approaches without any external knowledge or model updates.
This paper presents a transformer-based approach for classifying hope expressions in text. We developed and compared three architectures (BERT, GPT-2, and DeBERTa) for both binary classification (Hope vs. Not Hope) and multiclass categorization (five hope-related categories). Our initial BERT implementation achieved 83.65% binary and 74.87% multiclass accuracy. In the extended comparison, BERT demonstrated superior performance (84.49% binary, 72.03% multiclass accuracy) while requiring significantly fewer computational resources (443s vs. 704s training time) than newer architectures. GPT-2 showed lowest overall accuracy (79.34% binary, 71.29% multiclass), while DeBERTa achieved moderate results (80.70% binary, 71.56% multiclass) but at substantially higher computational cost (947s for multiclass training). Error analysis revealed architecture-specific strengths in detecting nuanced hope expressions, with GPT-2 excelling at sarcasm detection (92.46% recall). This study provides a framework for computational analysis of hope, with applications in mental health and social media analysis, while demonstrating that architectural suitability may outweigh model size for specialized emotion detection tasks.
Multimodal misinformation floods on various social media, and continues to evolve in the era of AI-generated content (AIGC). The emerged misinformation with low creation cost and high deception poses significant threats to society. While recent studies leverage general-purpose multimodal large language models (MLLMs) to achieve remarkable results in detection, they encounter two critical limitations: (1) Insufficient reasoning, where general-purpose MLLMs often follow the uniform reasoning paradigm but generate inaccurate explanations and judgments, due to the lack of the task-specific knowledge of multimodal misinformation detection. (2) Reasoning biases, where a single thinking mode make detectors a suboptimal path for judgment, struggling to keep pace with the fast-growing and intricate multimodal misinformation. In this paper, we propose MMD-Thinker, a two-stage framework for multimodal misinformation detection through adaptive multi-dimensional thinking. First, we develop tailor-designed thinking mode for multimodal misinformation detection. Second, we adopt task-specific instruction tuning to inject the tailored thinking mode into general-purpose MLLMs. Third, we further leverage reinforcement learning strategy with a mixed advantage function, which incentivizes the reasoning capabilities in trajectories. Furthermore, we construct the multimodal misinformation reasoning (MMR) dataset, encompasses more than 8K image-text pairs with both reasoning processes and classification labels, to make progress in the relam of multimodal misinformation detection. Experimental results demonstrate that our proposed MMD-Thinker achieves state-of-the-art performance on both in-domain and out-of-domain benchmark datasets, while maintaining flexible inference and token usage. Code will be publicly available at Github.
Existing industrial anomaly detection methods mainly determine whether an anomaly is present. However, real-world applications also require discovering and classifying multiple anomaly types. Since industrial anomalies are semantically subtle and current methods do not sufficiently exploit image priors, direct clustering approaches often perform poorly. To address these challenges, we propose ProtoAnomalyNCD, a prototype-learning-based framework for discovering unseen anomaly classes of multiple types that can be integrated with various anomaly detection methods. First, to suppress background clutter, we leverage Grounded SAM with text prompts to localize object regions as priors for the anomaly classification network. Next, because anomalies usually appear as subtle and fine-grained patterns on the product, we introduce an Anomaly-Map-Guided Attention block. Within this block, we design a Region Guidance Factor that helps the attention module distinguish among background, object regions, and anomalous regions. By using both localized product regions and anomaly maps as priors, the module enhances anomalous features while suppressing background noise and preserving normal features for contrastive learning. Finally, under a unified prototype-learning framework, ProtoAnomalyNCD discovers and clusters unseen anomaly classes while simultaneously enabling multi-type anomaly classification. We further extend our method to detect unseen outliers, achieving task-level unification. Our method outperforms state-of-the-art approaches on the MVTec AD, MTD, and Real-IAD datasets.




Vision-language foundation models (VLMs) have shown great potential in feature transfer and generalization across a wide spectrum of medical-related downstream tasks. However, fine-tuning these models is resource-intensive due to their large number of parameters. Prompt tuning has emerged as a viable solution to mitigate memory usage and reduce training time while maintaining competitive performance. Nevertheless, the challenge is that existing prompt tuning methods cannot precisely distinguish different kinds of medical concepts, which miss essentially specific disease-related features across various medical imaging modalities in medical image classification tasks. We find that Large Language Models (LLMs), trained on extensive text corpora, are particularly adept at providing this specialized medical knowledge. Motivated by this, we propose incorporating LLMs into the prompt tuning process. Specifically, we introduce the CILMP, Conditional Intervention of Large Language Models for Prompt Tuning, a method that bridges LLMs and VLMs to facilitate the transfer of medical knowledge into VLM prompts. CILMP extracts disease-specific representations from LLMs, intervenes within a low-rank linear subspace, and utilizes them to create disease-specific prompts. Additionally, a conditional mechanism is incorporated to condition the intervention process on each individual medical image, generating instance-adaptive prompts and thus enhancing adaptability. Extensive experiments across diverse medical image datasets demonstrate that CILMP consistently outperforms state-of-the-art prompt tuning methods, demonstrating its effectiveness. Code is available at https://github.com/usr922/cilmp.
Despite recent advancements in 3D-text cross-modal alignment, existing state-of-the-art methods still struggle to align fine-grained textual semantics with detailed geometric structures, and their alignment performance degrades significantly when scaling to large-scale 3D databases. To overcome this limitation, we introduce 3DAlign-DAER, a unified framework designed to align text and 3D geometry via the proposed dynamic attention policy and the efficient retrieval strategy, capturing subtle correspondences for diverse cross-modal retrieval and classification tasks. Specifically, during the training, our proposed dynamic attention policy (DAP) employs the Hierarchical Attention Fusion (HAF) module to represent the alignment as learnable fine-grained token-to-point attentions. To optimize these attentions across different tasks and geometric hierarchies, our DAP further exploits the Monte Carlo tree search to dynamically calibrate HAF attention weights via a hybrid reward signal and further enhances the alignment between textual descriptions and local 3D geometry. During the inference, our 3DAlign-DAER introduces an Efficient Retrieval Strategy (ERS) to leverage efficient hierarchical searching in the large-scale embedding spaces, outperforming traditional methods (e.g., KNN) in accuracy and efficiency. Furthermore, to facilitate text-3D alignment research and train our 3DAlign-DAER, we construct Align3D-2M, a large-scale dataset featuring 2M text-3D pairs, to provide sufficient fine-grained cross-modal annotations. Extensive and comprehensive experiments demonstrate the superior performance of our 3DAlign-DAER on diverse benchmarks. We will release our codes, models, and datasets.




Person re-identification (ReID) aims to retrieve target pedestrian images given either visual queries (image-to-image, I2I) or textual descriptions (text-to-image, T2I). Although both tasks share a common retrieval objective, they pose distinct challenges: I2I emphasizes discriminative identity learning, while T2I requires accurate cross-modal semantic alignment. Existing methods often treat these tasks separately, which may lead to representation entanglement and suboptimal performance. To address this, we propose a unified framework named Hierarchical Prompt Learning (HPL), which leverages task-aware prompt modeling to jointly optimize both tasks. Specifically, we first introduce a Task-Routed Transformer, which incorporates dual classification tokens into a shared visual encoder to route features for I2I and T2I branches respectively. On top of this, we develop a hierarchical prompt generation scheme that integrates identity-level learnable tokens with instance-level pseudo-text tokens. These pseudo-tokens are derived from image or text features via modality-specific inversion networks, injecting fine-grained, instance-specific semantics into the prompts. Furthermore, we propose a Cross-Modal Prompt Regularization strategy to enforce semantic alignment in the prompt token space, ensuring that pseudo-prompts preserve source-modality characteristics while enhancing cross-modal transferability. Extensive experiments on multiple ReID benchmarks validate the effectiveness of our method, achieving state-of-the-art performance on both I2I and T2I tasks.
Fine-grained glomerular subtyping is central to kidney biopsy interpretation, but clinically valuable labels are scarce and difficult to obtain. Existing computational pathology approaches instead tend to evaluate coarse diseased classification under full supervision with image-only models, so it remains unclear how vision-language models (VLMs) should be adapted for clinically meaningful subtyping under data constraints. In this work, we model fine-grained glomerular subtyping as a clinically realistic few-shot problem and systematically evaluate both pathology-specialized and general-purpose vision-language models under this setting. We assess not only classification performance (accuracy, AUC, F1) but also the geometry of the learned representations, examining feature alignment between image and text embeddings and the separability of glomerular subtypes. By jointly analyzing shot count, model architecture and domain knowledge, and adaptation strategy, this study provides guidance for future model selection and training under real clinical data constraints. Our results indicate that pathology-specialized vision-language backbones, when paired with the vanilla fine-tuning, are the most effective starting point. Even with only 4-8 labeled examples per glomeruli subtype, these models begin to capture distinctions and show substantial gains in discrimination and calibration, though additional supervision continues to yield incremental improvements. We also find that the discrimination between positive and negative examples is as important as image-text alignment. Overall, our results show that supervision level and adaptation strategy jointly shape both diagnostic performance and multimodal structure, providing guidance for model selection, adaptation strategies, and annotation investment.