Text classification is the process of categorizing text documents into predefined categories or labels.
Satellite imagery differs fundamentally from natural images: its aerial viewpoint, very high resolution, diverse scale variations, and abundance of small objects demand both region-level spatial reasoning and holistic scene understanding. Current remote-sensing approaches remain fragmented between dual-encoder retrieval models, which excel at large-scale cross-modal search but cannot interleave modalities, and generative assistants, which support region-level interpretation but lack scalable retrieval capabilities. We propose $\textbf{VLM2GeoVec}$, an instruction-following, single-encoder vision-language model trained contrastively to embed interleaved inputs (images, text, bounding boxes, and geographic coordinates) in a unified vector space. Our single encoder interleaves all inputs into one joint embedding trained with a contrastive loss, eliminating multi-stage pipelines and task-specific modules. To evaluate its versatility, we introduce $\textbf{RSMEB}$, a novel benchmark covering key remote-sensing embedding applications: scene classification; cross-modal search; compositional retrieval; visual-question answering; visual grounding and region-level reasoning; and semantic geospatial retrieval. On RSMEB, it achieves $\textbf{26.6%}$ P@1 on region-caption retrieval (+25 pp vs. dual-encoder baselines), $\textbf{32.5%}$ P@1 on referring-expression retrieval (+19 pp), and $\textbf{17.8%}$ P@1 on semantic geo-localization retrieval (over $3\times$ prior best), while matching or exceeding specialized baselines on conventional tasks such as scene classification and cross-modal retrieval. VLM2GeoVec unifies scalable retrieval with region-level spatial reasoning, enabling cohesive multimodal analysis in remote sensing. We will publicly release the code, checkpoints, and data upon acceptance.
We propose a text-to-IMU (inertial measurement unit) motion-synthesis framework to obtain realistic IMU data by fine-tuning a pretrained diffusion model with an acceleration-based second-order loss (L_acc). L_acc enforces consistency in the discrete second-order temporal differences of the generated motion, thereby aligning the diffusion prior with IMU-specific acceleration patterns. We integrate L_acc into the training objective of an existing diffusion model, finetune the model to obtain an IMU-specific motion prior, and evaluate the model with an existing text-to-IMU framework that comprises surface modelling and virtual sensor simulation. We analysed acceleration signal fidelity and differences between synthetic motion representation and actual IMU recordings. As a downstream application, we evaluated Human Activity Recognition (HAR) and compared the classification performance using data of our method with the earlier diffusion model and two additional diffusion model baselines. When we augmented the earlier diffusion model objective with L_acc and continued training, L_acc decreased by 12.7% relative to the original model. The improvements were considerably larger in high-dynamic activities (i.e., running, jumping) compared to low-dynamic activities~(i.e., sitting, standing). In a low-dimensional embedding, the synthetic IMU data produced by our refined model shifts closer to the distribution of real IMU recordings. HAR classification trained exclusively on our refined synthetic IMU data improved performance by 8.7% compared to the earlier diffusion model and by 7.6% over the best-performing comparison diffusion model. We conclude that acceleration-aware diffusion refinement provides an effective approach to align motion generation and IMU synthesis and highlights how flexible deep learning pipelines are for specialising generic text-to-motion priors to sensor-specific tasks.




The rapid deployment of Large Language Models (LLMs) has created an urgent need for enhanced security and privacy measures in Machine Learning (ML). LLMs are increasingly being used to process untrusted text inputs and even generate executable code, often while having access to sensitive system controls. To address these security concerns, several companies have introduced guard models, which are smaller, specialized models designed to protect text generation models from adversarial or malicious inputs. In this work, we advance the study of adversarial inputs by introducing Super Suffixes, suffixes capable of overriding multiple alignment objectives across various models with different tokenization schemes. We demonstrate their effectiveness, along with our joint optimization technique, by successfully bypassing the protection mechanisms of Llama Prompt Guard 2 on five different text generation models for malicious text and code generation. To the best of our knowledge, this is the first work to reveal that Llama Prompt Guard 2 can be compromised through joint optimization. Additionally, by analyzing the changing similarity of a model's internal state to specific concept directions during token sequence processing, we propose an effective and lightweight method to detect Super Suffix attacks. We show that the cosine similarity between the residual stream and certain concept directions serves as a distinctive fingerprint of model intent. Our proposed countermeasure, DeltaGuard, significantly improves the detection of malicious prompts generated through Super Suffixes. It increases the non-benign classification rate to nearly 100%, making DeltaGuard a valuable addition to the guard model stack and enhancing robustness against adversarial prompt attacks.
Weakly supervised semantic segmentation (WSSS) in histopathology relies heavily on classification backbones, yet these models often localize only the most discriminative regions and struggle to capture the full spatial extent of tissue structures. Vision-language models such as CONCH offer rich semantic alignment and morphology-aware representations, while modern segmentation backbones like SegFormer preserve fine-grained spatial cues. However, combining these complementary strengths remains challenging, especially under weak supervision and without dense annotations. We propose a prototype learning framework for WSSS in histopathological images that integrates morphology-aware representations from CONCH, multi-scale structural cues from SegFormer, and text-guided semantic alignment to produce prototypes that are simultaneously semantically discriminative and spatially coherent. To effectively leverage these heterogeneous sources, we introduce text-guided prototype initialization that incorporates pathology descriptions to generate more complete and semantically accurate pseudo-masks. A structural distillation mechanism transfers spatial knowledge from SegFormer to preserve fine-grained morphological patterns and local tissue boundaries during prototype learning. Our approach produces high-quality pseudo masks without pixel-level annotations, improves localization completeness, and enhances semantic consistency across tissue types. Experiments on BCSS-WSSS datasets demonstrate that our prototype learning framework outperforms existing WSSS methods while remaining computationally efficient through frozen foundation model backbones and lightweight trainable adapters.




Large Language Models (LLMs) are increasingly deployed in high-stakes clinical applications in India. In many such settings, speakers of Indian languages frequently communicate using romanized text rather than native scripts, yet existing research rarely evaluates this orthographic variation using real-world data. We investigate how romanization impacts the reliability of LLMs in a critical domain: maternal and newborn healthcare triage. We benchmark leading LLMs on a real-world dataset of user-generated queries spanning five Indian languages and Nepali. Our results reveal consistent degradation in performance for romanized messages, with F1 scores trailing those of native scripts by 5-12 points. At our partner maternal health organization in India, this gap could cause nearly 2 million excess errors in triage. Crucially, this performance gap by scripts is not due to a failure in clinical reasoning. We demonstrate that LLMs often correctly infer the semantic intent of romanized queries. Nevertheless, their final classification outputs remain brittle in the presence of orthographic noise in romanized inputs. Our findings highlight a critical safety blind spot in LLM-based health systems: models that appear to understand romanized input may still fail to act on it reliably.
Understanding sentiment in financial documents is crucial for gaining insights into market behavior. These reports often contain obfuscated language designed to present a positive or neutral outlook, even when underlying conditions may be less favorable. This paper presents a novel approach using Aspect-Based Sentiment Analysis (ABSA) to decode obfuscated sentiment in Thai financial annual reports. We develop specific guidelines for annotating obfuscated sentiment in these texts and annotate more than one hundred financial reports. We then benchmark various text classification models on this annotated dataset, demonstrating strong performance in sentiment classification. Additionally, we conduct an event study to evaluate the real-world implications of our sentiment analysis on stock prices. Our results suggest that market reactions are selectively influenced by specific aspects within the reports. Our findings underscore the complexity of sentiment analysis in financial texts and highlight the importance of addressing obfuscated language to accurately assess market sentiment.
Cartographic reasoning is the skill of interpreting geographic relationships by aligning legends, map scales, compass directions, map texts, and geometries across one or more map images. Although essential as a concrete cognitive capability and for critical tasks such as disaster response and urban planning, it remains largely unevaluated. Building on progress in chart and infographic understanding, recent large vision language model studies on map visual question-answering often treat maps as a special case of charts. In contrast, map VQA demands comprehension of layered symbology (e.g., symbols, geometries, and text labels) as well as spatial relations tied to orientation and distance that often span multiple maps and are not captured by chart-style evaluations. To address this gap, we introduce FRIEDA, a benchmark for testing complex open-ended cartographic reasoning in LVLMs. FRIEDA sources real map images from documents and reports in various domains and geographical areas. Following classifications in Geographic Information System (GIS) literature, FRIEDA targets all three categories of spatial relations: topological (border, equal, intersect, within), metric (distance), and directional (orientation). All questions require multi-step inference, and many require cross-map grounding and reasoning. We evaluate eleven state-of-the-art LVLMs under two settings: (1) the direct setting, where we provide the maps relevant to the question, and (2) the contextual setting, where the model may have to identify the maps relevant to the question before reasoning. Even the strongest models, Gemini-2.5-Pro and GPT-5-Think, achieve only 38.20% and 37.20% accuracy, respectively, far below human performance of 84.87%. These results reveal a persistent gap in multi-step cartographic reasoning, positioning FRIEDA as a rigorous benchmark to drive progress on spatial intelligence in LVLMs.
Medical coding converts free-text clinical notes into standardized diagnostic and procedural codes, which are essential for billing, hospital operations, and medical research. Unlike ordinary text classification, it requires multi-step reasoning: extracting diagnostic concepts, applying guideline constraints, mapping to hierarchical codebooks, and ensuring cross-document consistency. Recent advances leverage agentic LLMs, but most rely on rigid, manually crafted workflows that fail to capture the nuance and variability of real-world documentation, leaving open the question of how to systematically learn effective workflows. We present MedDCR, a closed-loop framework that treats workflow design as a learning problem. A Designer proposes workflows, a Coder executes them, and a Reflector evaluates predictions and provides constructive feedback, while a memory archive preserves prior designs for reuse and iterative refinement. On benchmark datasets, MedDCR outperforms state-of-the-art baselines and produces interpretable, adaptable workflows that better reflect real coding practice, improving both the reliability and trustworthiness of automated systems.
Text-to-SQL datasets are essential for training and evaluating text-to-SQL models, but existing datasets often suffer from limited coverage and fail to capture the diversity of real-world applications. To address this, we propose a novel taxonomy for text-to-SQL classification based on dimensions including core intents, statement types, syntax structures, and key actions. Using this taxonomy, we evaluate widely used public text-to-SQL datasets (e.g., Spider and Bird) and reveal limitations in their coverage and diversity. We then introduce a taxonomy-guided dataset synthesis pipeline, yielding a new dataset named SQL-Synth. This approach combines the taxonomy with Large Language Models (LLMs) to ensure the dataset reflects the breadth and complexity of real-world text-to-SQL applications. Extensive analysis and experimental results validate the effectiveness of our taxonomy, as SQL-Synth exhibits greater diversity and coverage compared to existing benchmarks. Moreover, we uncover that existing LLMs typically fall short in adequately capturing the full range of scenarios, resulting in limited performance on SQL-Synth. However, fine-tuning can substantially improve their performance in these scenarios. The proposed taxonomy has significant potential impact, as it not only enables comprehensive analysis of datasets and the performance of different LLMs, but also guides the construction of training data for LLMs.




As CLIP's global alignment limits its ability to capture fine-grained details, recent efforts have focused on enhancing its region-text alignment. However, current remote sensing (RS)-specific CLIP variants still inherit this limited spatial awareness. We identify two key limitations behind this: (1) current RS image-text datasets generate global captions from object-level labels, leaving the original object-level supervision underutilized; (2) despite the success of region-text alignment methods in general domain, their direct application to RS data often leads to performance degradation. To address these, we construct the first multi-granularity RS image-text dataset, MGRS-200k, featuring rich object-level textual supervision for RS region-category alignment. We further investigate existing fine-grained CLIP tuning strategies and find that current explicit region-text alignment methods, whether in a direct or indirect way, underperform due to severe degradation of CLIP's semantic coherence. Building on these, we propose FarSLIP, a Fine-grained Aligned RS Language-Image Pretraining framework. Rather than the commonly used patch-to-CLS self-distillation, FarSLIP employs patch-to-patch distillation to align local and global visual cues, which improves feature discriminability while preserving semantic coherence. Additionally, to effectively utilize region-text supervision, it employs simple CLS token-based region-category alignment rather than explicit patch-level alignment, further enhancing spatial awareness. FarSLIP features improved fine-grained vision-language alignment in RS domain and sets a new state of the art not only on RS open-vocabulary semantic segmentation, but also on image-level tasks such as zero-shot classification and image-text retrieval. Our dataset, code, and models are available at https://github.com/NJU-LHRS/FarSLIP.