Text classification is the process of categorizing text documents into predefined categories or labels.
Artificial intelligence (AI) has transformed medical imaging, with computer vision (CV) systems achieving state-of-the-art performance in classification and detection tasks. However, these systems typically output structured predictions, leaving radiologists responsible for translating results into full narrative reports. Recent advances in large language models (LLMs), such as GPT-4, offer new opportunities to bridge this gap by generating diagnostic narratives from structured findings. This study introduces a pipeline that integrates YOLOv5 and YOLOv8 for anomaly detection in chest X-ray images with a large language model (LLM) to generate natural-language radiology reports. The YOLO models produce bounding-box predictions and class labels, which are then passed to the LLM to generate descriptive findings and clinical summaries. YOLOv5 and YOLOv8 are compared in terms of detection accuracy, inference latency, and the quality of generated text, as measured by cosine similarity to ground-truth reports. Results show strong semantic similarity between AI and human reports, while human evaluation reveals GPT-4 excels in clarity (4.88/5) but exhibits lower scores for natural writing flow (2.81/5), indicating that current systems achieve clinical accuracy but remain stylistically distinguishable from radiologist-authored text.
This paper presents ACT (Allocate Connections between Texts), a novel three-stage algorithm for the automatic detection of biblical quotations in Rabbinic literature. Unlike existing text reuse frameworks that struggle with short, paraphrased, or structurally embedded quotations, ACT combines a morphology-aware alignment algorithm with a context-sensitive enrichment stage that identifies complex citation patterns such as "Wave" and "Echo" quotations. Our approach was evaluated against leading systems, including Dicta, Passim, Text-Matcher, as well as human-annotated critical editions. We further assessed three ACT configurations to isolate the contribution of each component. Results demonstrate that the full ACT pipeline (ACT-QE) outperforms all baselines, achieving an F1 score of 0.91, with superior Recall (0.89) and Precision (0.94). Notably, ACT-2, which lacks stylistic enrichment, achieves higher Recall (0.90) but suffers in Precision, while ACT-3, using longer n-grams, offers a tradeoff between coverage and specificity. In addition to improving quotation detection, ACT's ability to classify stylistic patterns across corpora opens new avenues for genre classification and intertextual analysis. This work contributes to digital humanities and computational philology by addressing the methodological gap between exhaustive machine-based detection and human editorial judgment. ACT lays a foundation for broader applications in historical textual analysis, especially in morphologically rich and citation-dense traditions like Aggadic literature.




Multimodal chest X-Ray analysis often fine-tunes large vision-language models, which is computationally costly. We study parameter-efficient training (PET) strategies, including frozen encoders, BitFit, LoRA, and adapters for multi-label classification on the Indiana University Chest X-Ray dataset (3,851 image-report pairs; 579 test samples). To mitigate data leakage, we redact pathology terms from reports used as text inputs while retaining clinical context. Under a fixed parameter budget (2.37M parameters, 2.51% of total), all PET variants achieve AUROC between 0.892 and 0.908, outperforming full fine-tuning (0.770 AUROC), which uses 94.3M trainable parameters, a 40x reduction. External validation on CheXpert (224,316 images, 58x larger) confirms scalability: all PET methods achieve >0.69 AUROC with <9% trainable parameters, with Adapter achieving best performance (0.7214 AUROC). Budget-matched comparisons reveal that vision-only models (0.653 AUROC, 1.06M parameters) outperform budget-matched multimodal models (0.641 AUROC, 1.06M parameters), indicating improvements arise primarily from parameter allocation rather than cross-modal synergy. While PET methods show degraded calibration (ECE: 0.29-0.34) compared to simpler models (ECE: 0.049), this represents a tractable limitation addressable through post-hoc calibration methods. These findings demonstrate that frozen encoder strategies provide superior discrimination at substantially reduced computational cost, though calibration correction is essential for clinical deployment.




Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.




Developing a good speaker embedding has received tremendous interest in the speech community, with representations such as i-vector and d-vector demonstrating remarkable performance across various tasks. Despite their widespread adoption, a fundamental question remains largely unexplored: what properties are actually encoded in these embeddings? To address this gap, we conduct a comprehensive analysis of three prominent speaker embedding methods: i-vector, d-vector, and RNN/LSTM-based sequence-vector (s-vector). Through carefully designed classification tasks, we systematically investigate their encoding capabilities across multiple dimensions, including speaker identity, gender, speaking rate, text content, word order, and channel information. Our analysis reveals distinct strengths and limitations of each embedding type: i-vector excels at speaker discrimination but encodes limited sequential information; s-vector captures text content and word order effectively but struggles with speaker identity; d-vector shows balanced performance but loses sequential information through averaging. Based on these insights, we propose a novel multi-task learning framework that integrates i-vector and s-vector, resulting in a new speaker embedding (i-s-vector) that combines their complementary advantages. Experimental results on RSR2015 demonstrate that the proposed i-s-vector achieves more than 50% EER reduction compared to the i-vector baseline on content mismatch trials, validating the effectiveness of our approach.
Hallucinations in Large Language Models (LLMs) pose a significant challenge, generating misleading or unverifiable content that undermines trust and reliability. Existing evaluation methods, such as KnowHalu, employ multi-stage verification but suffer from high computational costs. To address this, we integrate the Hughes Hallucination Evaluation Model (HHEM), a lightweight classification-based framework that operates independently of LLM-based judgments, significantly improving efficiency while maintaining high detection accuracy. We conduct a comparative analysis of hallucination detection methods across various LLMs, evaluating True Positive Rate (TPR), True Negative Rate (TNR), and Accuracy on question-answering (QA) and summarization tasks. Our results show that HHEM reduces evaluation time from 8 hours to 10 minutes, while HHEM with non-fabrication checking achieves the highest accuracy \(82.2\%\) and TPR \(78.9\%\). However, HHEM struggles with localized hallucinations in summarization tasks. To address this, we introduce segment-based retrieval, improving detection by verifying smaller text components. Additionally, our cumulative distribution function (CDF) analysis indicates that larger models (7B-9B parameters) generally exhibit fewer hallucinations, while intermediate-sized models show higher instability. These findings highlight the need for structured evaluation frameworks that balance computational efficiency with robust factual validation, enhancing the reliability of LLM-generated content.




Teachers' emotional states are critical in educational scenarios, profoundly impacting teaching efficacy, student engagement, and learning achievements. However, existing studies often fail to accurately capture teachers' emotions due to the performative nature and overlook the critical impact of instructional information on emotional expression.In this paper, we systematically investigate teacher sentiment analysis by building both the dataset and the model accordingly. We construct the first large-scale teacher multimodal sentiment analysis dataset, T-MED.To ensure labeling accuracy and efficiency, we employ a human-machine collaborative labeling process.The T-MED dataset includes 14,938 instances of teacher emotional data from 250 real classrooms across 11 subjects ranging from K-12 to higher education, integrating multimodal text, audio, video, and instructional information.Furthermore, we propose a novel asymmetric attention-based multimodal teacher sentiment analysis model, AAM-TSA.AAM-TSA introduces an asymmetric attention mechanism and hierarchical gating unit to enable differentiated cross-modal feature fusion and precise emotional classification. Experimental results demonstrate that AAM-TSA significantly outperforms existing state-of-the-art methods in terms of accuracy and interpretability on the T-MED dataset.




Prompt injection and jailbreaking attacks pose persistent security challenges to large language model (LLM)-based systems. We present an efficient and systematically evaluated defense architecture that mitigates these threats through a lightweight, multi-stage pipeline. Its core component is a semantic filter based on text normalization, TF-IDF representations, and a Linear SVM classifier. Despite its simplicity, this module achieves 93.4% accuracy and 96.5% specificity on held-out data, substantially reducing attack throughput while incurring negligible computational overhead. Building on this efficient foundation, the full pipeline integrates complementary detection and mitigation mechanisms that operate at successive stages, providing strong robustness with minimal latency. In comparative experiments, our SVM-based configuration improves overall accuracy from 35.1% to 93.4% while reducing average time to completion from approximately 450s to 47s, yielding over 10 times lower latency than ShieldGemma. These results demonstrate that the proposed design simultaneously advances defensive precision and efficiency, addressing a core limitation of current model-based moderators. Evaluation across a curated corpus of over 30,000 labeled prompts, including benign, jailbreak, and application-layer injections, confirms that staged, resource-efficient defenses can robustly secure modern LLM-driven applications.
With the rise of easily accessible tools for generating and manipulating multimedia content, realistic synthetic alterations to digital media have become a widespread threat, often involving manipulations across multiple modalities simultaneously. Recently, such techniques have been increasingly employed to distort narratives of important events and to spread misinformation on social media, prompting the development of misinformation detectors. In the context of misinformation conveyed through image-text pairs, several detection methods have been proposed. However, these approaches typically rely on computationally intensive architectures or require large amounts of annotated data. In this work we introduce LADLE-MM: Limited Annotation based Detector with Learned Ensembles for Multimodal Misinformation, a model-soup initialized multimodal misinformation detector designed to operate under a limited annotation setup and constrained training resources. LADLE-MM is composed of two unimodal branches and a third multimodal one that enhances image and text representations with additional multimodal embeddings extracted from BLIP, serving as fixed reference space. Despite using 60.3% fewer trainable parameters than previous state-of-the-art models, LADLE-MM achieves competitive performance on both binary and multi-label classification tasks on the DGM4 benchmark, outperforming existing methods when trained without grounding annotations. Moreover, when evaluated on the VERITE dataset, LADLE-MM outperforms current state-of-the-art approaches that utilize more complex architectures involving Large Vision-Language-Models, demonstrating the effective generalization ability in an open-set setting and strong robustness to unimodal bias.




Large vision-language models like CLIP are increasingly used in medical imaging tasks due to their ability to align images and text without the need for extensive labeled data. This makes them particularly useful for applications like image retrieval, report generation, and classification in clinical settings. A potential issue to this approach is that CLIP-based models often under perform when interpreting negated phrases, which is especially problematic in the context of medical diagnosing. In this study, we evaluate the Stanford AIMI CheXagent model on its ability to correctly retrieve chest X-ray images using prompts with and without negation. The goal of this project is to understand where this model fails and then use it as a base model to improve its retrieval accuracy by fine tuning methods outlined in previous work. Results from this study show improvement in handling of negation in the CLIP model with a slight decrease in accuracy of positive prompt evaluation. Alongside retrieval accuracy, we examined internal model behavior through token attribution, t-SNE projection, and attention-head ablation to better characterize how each fine tuning approach reshaped the text encoders representation of negated clinical language. Through this work, we hope to better understand the internal behavior of CLIP and improve its handling of negation using clinically relevant language for improving its reliability in medical AI devices.