Social media platforms like X (formerly Twitter) play a crucial role in shaping public discourse and societal norms. This study examines the term Sessiz Istila (Silent Invasion) on Turkish social media, highlighting the rise of anti-refugee sentiment amidst the Syrian refugee influx. Using BERTurk and the TREMO dataset, we developed an advanced Emotion Recognition Model (ERM) tailored for Turkish, achieving 92.62% accuracy in categorizing emotions such as happiness, fear, anger, sadness, disgust, and surprise. By applying this model to large-scale X data, the study uncovers emotional nuances in Turkish discourse, contributing to computational social science by advancing sentiment analysis in underrepresented languages and enhancing our understanding of global digital discourse and the unique linguistic challenges of Turkish. The findings underscore the transformative potential of localized NLP tools, with our ERM model offering practical applications for real-time sentiment analysis in Turkish-language contexts. By addressing critical areas, including marketing, public relations, and crisis management, these models facilitate improved decision-making through timely and accurate sentiment tracking. This highlights the significance of advancing research that accounts for regional and linguistic nuances.
This paper investigates advertising practices in print newspapers across India using a novel data-driven approach. We develop a pipeline employing image processing and OCR techniques to extract articles and advertisements from digital versions of print newspapers with high accuracy. Applying this methodology to five popular newspapers that span multiple regions and three languages, English, Hindi, and Telugu, we assembled a dataset of more than 12,000 editions containing several hundred thousand advertisements. Collectively, these newspapers reach a readership of over 100 million people. Using this extensive dataset, we conduct a comprehensive analysis to answer key questions about print advertising: who advertises, what they advertise, when they advertise, where they place their ads, and how they advertise. Our findings reveal significant patterns, including the consistent level of print advertising over the past six years despite declining print circulation, the overrepresentation of company ads on prominent pages, and the disproportionate revenue contributed by government ads. Furthermore, we examine whether advertising in a newspaper influences the coverage an advertiser receives. Through regression analyses on coverage volume and sentiment, we find strong evidence supporting this hypothesis for corporate advertisers. The results indicate a clear trend where increased advertising correlates with more favorable and extensive media coverage, a relationship that remains robust over time and across different levels of advertiser popularity.
While transformer-based models achieve strong performance on text classification, we explore whether masking input tokens can further enhance their effectiveness. We propose token masking regularization, a simple yet theoretically motivated method that randomly replaces input tokens with a special [MASK] token at probability p. This introduces stochastic perturbations during training, leading to implicit gradient averaging that encourages the model to capture deeper inter-token dependencies. Experiments on language identification and sentiment analysis -- across diverse models (mBERT, Qwen2.5-0.5B, TinyLlama-1.1B) -- show consistent improvements over standard regularization techniques. We identify task-specific optimal masking rates, with p = 0.1 as a strong general default. We attribute the gains to two key effects: (1) input perturbation reduces overfitting, and (2) gradient-level smoothing acts as implicit ensembling.
This paper presents an end-to-end suite for multilingual information extraction and processing from image-based documents. The system uses Optical Character Recognition (Tesseract) to extract text in languages such as English, Hindi, and Tamil, and then a pipeline involving large language model APIs (Gemini) for cross-lingual translation, abstractive summarization, and re-translation into a target language. Additional modules add sentiment analysis (TensorFlow), topic classification (Transformers), and date extraction (Regex) for better document comprehension. Made available in an accessible Gradio interface, the current research shows a real-world application of libraries, models, and APIs to close the language gap and enhance access to information in image media across different linguistic environments
This paper explores the design of an aspect-based sentiment analysis system using large language models (LLMs) for real-world use. We focus on quadruple opinion extraction -- identifying aspect categories, sentiment polarity, targets, and opinion expressions from text data across different domains and languages. Using internal datasets, we investigate whether a single fine-tuned model can effectively handle multiple domain-specific taxonomies simultaneously. We demonstrate that a combined multi-domain model achieves performance comparable to specialized single-domain models while reducing operational complexity. We also share lessons learned for handling non-extractive predictions and evaluating various failure modes when developing LLM-based systems for structured prediction tasks.
Transformer models have revolutionized AI, powering applications like content generation and sentiment analysis. However, their deployment in Machine Learning as a Service (MLaaS) raises significant privacy concerns, primarily due to the centralized processing of sensitive user data. Private Transformer Inference (PTI) offers a solution by utilizing cryptographic techniques such as secure multi-party computation and homomorphic encryption, enabling inference while preserving both user data and model privacy. This paper reviews recent PTI advancements, highlighting state-of-the-art solutions and challenges. We also introduce a structured taxonomy and evaluation framework for PTI, focusing on balancing resource efficiency with privacy and bridging the gap between high-performance inference and data privacy.
Wildfires have become increasingly frequent, irregular, and severe in recent years. Understanding how affected populations perceive and respond during wildfire crises is critical for timely and empathetic disaster response. Social media platforms offer a crowd-sourced channel to capture evolving public discourse, providing hyperlocal information and insight into public sentiment. This study analyzes Reddit discourse during the 2025 Los Angeles wildfires, spanning from the onset of the disaster to full containment. We collect 385 posts and 114,879 comments related to the Palisades and Eaton fires. We adopt topic modeling methods to identify the latent topics, enhanced by large language models (LLMs) and human-in-the-loop (HITL) refinement. Furthermore, we develop a hierarchical framework to categorize latent topics, consisting of two main categories, Situational Awareness (SA) and Crisis Narratives (CN). The volume of SA category closely aligns with real-world fire progressions, peaking within the first 2-5 days as the fires reach the maximum extent. The most frequent co-occurring category set of public health and safety, loss and damage, and emergency resources expands on a wide range of health-related latent topics, including environmental health, occupational health, and one health. Grief signals and mental health risks consistently accounted for 60 percentage and 40 percentage of CN instances, respectively, with the highest total volume occurring at night. This study contributes the first annotated social media dataset on the 2025 LA fires, and introduces a scalable multi-layer framework that leverages topic modeling for crisis discourse analysis. By identifying persistent public health concerns, our results can inform more empathetic and adaptive strategies for disaster response, public health communication, and future research in comparable climate-related disaster events.
Large Language Models (LLMs) are predominantly trained and aligned in ways that reinforce Western-centric epistemologies and socio-cultural norms, leading to cultural homogenization and limiting their ability to reflect global civilizational plurality. Existing benchmarking frameworks fail to adequately capture this bias, as they rely on rigid, closed-form assessments that overlook the complexity of cultural inclusivity. To address this, we introduce WorldView-Bench, a benchmark designed to evaluate Global Cultural Inclusivity (GCI) in LLMs by analyzing their ability to accommodate diverse worldviews. Our approach is grounded in the Multiplex Worldview proposed by Senturk et al., which distinguishes between Uniplex models, reinforcing cultural homogenization, and Multiplex models, which integrate diverse perspectives. WorldView-Bench measures Cultural Polarization, the exclusion of alternative perspectives, through free-form generative evaluation rather than conventional categorical benchmarks. We implement applied multiplexity through two intervention strategies: (1) Contextually-Implemented Multiplex LLMs, where system prompts embed multiplexity principles, and (2) Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents representing distinct cultural perspectives collaboratively generate responses. Our results demonstrate a significant increase in Perspectives Distribution Score (PDS) entropy from 13% at baseline to 94% with MAS-Implemented Multiplex LLMs, alongside a shift toward positive sentiment (67.7%) and enhanced cultural balance. These findings highlight the potential of multiplex-aware AI evaluation in mitigating cultural bias in LLMs, paving the way for more inclusive and ethically aligned AI systems.
The emergence of global health crises, such as COVID-19 and Monkeypox (mpox), has underscored the importance of understanding public sentiment to inform effective public health strategies. This study conducts a comparative sentiment analysis of public perceptions surrounding COVID-19 and mpox by leveraging extensive datasets of 147,475 and 106,638 tweets, respectively. Advanced machine learning models, including Logistic Regression, Naive Bayes, RoBERTa, DistilRoBERTa and XLNet, were applied to perform sentiment classification, with results indicating key trends in public emotion and discourse. The analysis highlights significant differences in public sentiment driven by disease characteristics, media representation, and pandemic fatigue. Through the lens of sentiment polarity and thematic trends, this study offers valuable insights into tailoring public health messaging, mitigating misinformation, and fostering trust during concurrent health crises. The findings contribute to advancing sentiment analysis applications in public health informatics, setting the groundwork for enhanced real-time monitoring and multilingual analysis in future research.
As large language models (LLMs) become widely deployed, concerns about their safety and alignment grow. An approach to steer LLM behavior, such as mitigating biases or defending against jailbreaks, is to identify which parts of a prompt influence specific aspects of the model's output. Token-level attribution methods offer a promising solution, but still struggle in text generation, explaining the presence of each token in the output separately, rather than the underlying semantics of the entire LLM response. We introduce ConceptX, a model-agnostic, concept-level explainability method that identifies the concepts, i.e., semantically rich tokens in the prompt, and assigns them importance based on the outputs' semantic similarity. Unlike current token-level methods, ConceptX also offers to preserve context integrity through in-place token replacements and supports flexible explanation goals, e.g., gender bias. ConceptX enables both auditing, by uncovering sources of bias, and steering, by modifying prompts to shift the sentiment or reduce the harmfulness of LLM responses, without requiring retraining. Across three LLMs, ConceptX outperforms token-level methods like TokenSHAP in both faithfulness and human alignment. Steering tasks boost sentiment shift by 0.252 versus 0.131 for random edits and lower attack success rates from 0.463 to 0.242, outperforming attribution and paraphrasing baselines. While prompt engineering and self-explaining methods sometimes yield safer responses, ConceptX offers a transparent and faithful alternative for improving LLM safety and alignment, demonstrating the practical value of attribution-based explainability in guiding LLM behavior.