Abstract:Understanding people's preferences and needs is crucial for urban planning decisions, yet current approaches often combine them from multi-cultural and multi-city populations, obscuring important demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants, with balanced demographics, from five countries and 45 nationalities. This dataset, introduced as Street Perception Evaluation Considering Socioeconomics (SPECS), exhibits statistically significant differences in perception scores in six traditionally used indicators (safe, lively, wealthy, beautiful, boring, and depressing) and four new ones we propose (live nearby, walk, cycle, green) among demographics and personalities. We revealed that location-based sentiments are carried over in people's preferences when comparing urban streetscapes with other cities. Further, we compared the perception scores based on where participants and streetscapes are from. We found that an off-the-shelf machine learning model trained on an existing global perception dataset tends to overestimate positive indicators and underestimate negative ones compared to human responses, suggesting that targeted intervention should consider locals' perception. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
Abstract:Visibility analysis is one of the fundamental analytics methods in urban planning and landscape research, traditionally conducted through computational simulations based on the Line-of-Sight (LoS) principle. However, when assessing the visibility of named urban objects such as landmarks, geometric intersection alone fails to capture the contextual and perceptual dimensions of visibility as experienced in the real world. The study challenges the traditional LoS-based approaches by introducing a new, image-based visibility analysis method. Specifically, a Vision Language Model (VLM) is applied to detect the target object within a direction-zoomed Street View Image (SVI). Successful detection represents the object's visibility at the corresponding SVI location. Further, a heterogeneous visibility graph is constructed to address the complex interaction between observers and target objects. In the first case study, the method proves its reliability in detecting the visibility of six tall landmark constructions in global cities, with an overall accuracy of 87%. Furthermore, it reveals broader contextual differences when the landmarks are perceived and experienced. In the second case, the proposed visibility graph uncovers the form and strength of connections for multiple landmarks along the River Thames in London, as well as the places where these connections occur. Notably, bridges on the River Thames account for approximately 30% of total connections. Our method complements and enhances traditional LoS-based visibility analysis, and showcases the possibility of revealing the prevalent connection of any visual objects in the urban environment. It opens up new research perspectives for urban planning, heritage conservation, and computational social science.
Abstract:Urban street environments are vital to supporting human activity in public spaces. The emergence of big data, such as street view images (SVIs) combined with multimodal large language models (MLLMs), is transforming how researchers and practitioners investigate, measure, and evaluate semantic and visual elements of urban environments. Considering the low threshold for creating automated evaluative workflows using MLLMs, it is crucial to explore both the risks and opportunities associated with these probabilistic models. In particular, the extent to which the integration of expert knowledge can influence the performance of MLLMs in evaluating the quality of urban design has not been fully explored. This study sets out an initial exploration of how integrating more formal and structured representations of expert urban design knowledge into the input prompts of an MLLM (ChatGPT-4) can enhance the model's capability and reliability in evaluating the walkability of built environments using SVIs. We collect walkability metrics from the existing literature and categorize them using relevant ontologies. We then select a subset of these metrics, focusing on the subthemes of pedestrian safety and attractiveness, and develop prompts for the MLLM accordingly. We analyze the MLLM's ability to evaluate SVI walkability subthemes through prompts with varying levels of clarity and specificity regarding evaluation criteria. Our experiments demonstrate that MLLMs are capable of providing assessments and interpretations based on general knowledge and can support the automation of multimodal image-text evaluations. However, they generally provide more optimistic scores and can make mistakes when interpreting the provided metrics, resulting in incorrect evaluations. By integrating expert knowledge, the MLLM's evaluative performance exhibits higher consistency and concentration.
Abstract:Despite recent advancements in surface reconstruction, Level of Detail (LoD) 3 building reconstruction remains an unresolved challenge. The main issue pertains to the object-oriented modelling paradigm, which requires georeferencing, watertight geometry, facade semantics, and low-poly representation -- Contrasting unstructured mesh-oriented models. In Texture2LoD3, we introduce a novel method leveraging the ubiquity of 3D building model priors and panoramic street-level images, enabling the reconstruction of LoD3 building models. We observe that prior low-detail building models can serve as valid planar targets for ortho-rectifying street-level panoramic images. Moreover, deploying segmentation on accurately textured low-level building surfaces supports maintaining essential georeferencing, watertight geometry, and low-poly representation for LoD3 reconstruction. In the absence of LoD3 validation data, we additionally introduce the ReLoD3 dataset, on which we experimentally demonstrate that our method leads to improved facade segmentation accuracy by 11% and can replace costly manual projections. We believe that Texture2LoD3 can scale the adoption of LoD3 models, opening applications in estimating building solar potential or enhancing autonomous driving simulations. The project website, code, and data are available here: https://wenzhaotang.github.io/Texture2LoD3/.
Abstract:Street view imagery (SVI) has been instrumental in many studies in the past decade to understand and characterize street features and the built environment. Researchers across a variety of domains, such as transportation, health, architecture, human perception, and infrastructure have employed different methods to analyze SVI. However, these applications and image-processing procedures have not been standardized, and solutions have been implemented in isolation, often making it difficult for others to reproduce existing work and carry out new research. Using SVI for research requires multiple technical steps: accessing APIs for scalable data collection, preprocessing images to standardize formats, implementing computer vision models for feature extraction, and conducting spatial analysis. These technical requirements create barriers for researchers in urban studies, particularly those without extensive programming experience. We develop ZenSVI, a free and open-source Python package that integrates and implements the entire process of SVI analysis, supporting a wide range of use cases. Its end-to-end pipeline includes downloading SVI from multiple platforms (e.g., Mapillary and KartaView) efficiently, analyzing metadata of SVI, applying computer vision models to extract target features, transforming SVI into different projections (e.g., fish-eye and perspective) and different formats (e.g., depth map and point cloud), visualizing analyses with maps and plots, and exporting outputs to other software tools. We demonstrate its use in Singapore through a case study of data quality assessment and clustering analysis in a streamlined manner. Our software improves the transparency, reproducibility, and scalability of research relying on SVI and supports researchers in conducting urban analyses efficiently. Its modular design facilitates extensions and unlocking new use cases.
Abstract:Urban morphology, examining city spatial configurations, links urban design to sustainability. Morphology metrics play a fundamental role in performance-driven computational urban design (CUD) which integrates urban form generation, performance evaluation and optimization. However, a critical gap remains between performance evaluation and complex urban form generation, caused by the disconnection between morphology metrics and urban form, particularly in metric-to-form workflows. It prevents the application of optimized metrics to generate improved urban form with enhanced urban performance. Formulating morphology metrics that not only effectively characterize complex urban forms but also enable the reconstruction of diverse forms is of significant importance. This paper highlights the importance of establishing a bi-directional mapping between morphology metrics and complex urban form to enable the integration of urban form generation with performance evaluation. We present an approach that can 1) formulate morphology metrics to both characterize urban forms and in reverse, retrieve diverse similar 3D urban forms, and 2) evaluate the effectiveness of morphology metrics in representing 3D urban form characteristics of blocks by comparison. We demonstrate the methodology with 3D urban models of New York City, covering 14,248 blocks. We use neural networks and information retrieval for morphology metric encoding, urban form clustering and morphology metric evaluation. We identified an effective set of morphology metrics for characterizing block-scale urban forms through comparison. The proposed methodology tightly couples complex urban forms with morphology metrics, hence it can enable a seamless and bidirectional relationship between urban form generation and optimization in performance-driven urban design towards sustainable urban design and planning.
Abstract:Street View Imagery (SVI) has emerged as a valuable data form in urban studies, enabling new ways to map and sense urban environments. However, fundamental concerns regarding the representativeness, quality, and reliability of SVI remain underexplored, e.g.\ to what extent can cities be captured by such data and do data gaps result in bias. This research, positioned at the intersection of spatial data quality and urban analytics, addresses these concerns by proposing a novel workflow to estimate SVI's feature-level coverage on urban environment. The workflow integrates the positional relationships between SVI and target features, as well as the impact of environmental obstructions. Expanding the domain of data quality to SVI, we introduce an indicator system that evaluates the extent of coverage, focusing on the completeness and frequency dimensions. Using London as a case study, three experiments are conducted to identify potential biases in SVI's ability to cover and represent urban features, with a focus on building facades. The research highlights the limitations of traditional spatial data quality metrics in assessing SVI, and variability of SVI coverage under different data acquisition practices. Tailored approaches that consider the unique metadata and horizontal perspective of SVI are also underscored. The findings suggest that while SVI offers valuable insights, it is no panacea -- its application in urban research requires careful consideration of data coverage and feature-level representativeness to ensure reliable results.
Abstract:The paper describes a dataset that was collected by infrared thermography, which is a non-contact, non-intrusive technique to collect data and analyze the built environment in various aspects. While most studies focus on the city and building scales, the rooftop observatory provides high temporal and spatial resolution observations with dynamic interactions on the district scale. The rooftop infrared thermography observatory with a multi-modal platform that is capable of assessing a wide range of dynamic processes in urban systems was deployed in Singapore. It was placed on the top of two buildings that overlook the outdoor context of the campus of the National University of Singapore. The platform collects remote sensing data from tropical areas on a temporal scale, allowing users to determine the temperature trend of individual features such as buildings, roads, and vegetation. The dataset includes 1,365,921 thermal images collected on average at approximately 10 seconds intervals from two locations during ten months.
Abstract:We present a new method to create spatial data using a generative adversarial network (GAN). Our contribution uses coarse and widely available geospatial data to create maps of less available features at the finer scale in the built environment, bypassing their traditional acquisition techniques (e.g. satellite imagery or land surveying). In the work, we employ land use data and road networks as input to generate building footprints, and conduct experiments in 9 cities around the world. The method, which we implement in a tool we release openly, enables generating approximate maps of the urban form, and it is generalisable to augment other types of geoinformation, enhancing the completeness and quality of spatial data infrastructure. It may be especially useful in locations missing detailed and high-resolution data and those that are mapped with uncertain or heterogeneous quality, such as much of OpenStreetMap. The quality of the results is influenced by the urban form and scale. In most cases, experiments suggest promising performance as the method tends to truthfully indicate the locations, amount, and shape of buildings. The work has the potential to support several applications, such as energy, climate, and urban morphology studies in areas previously lacking required data.
Abstract:Studies evaluating bikeability usually compute spatial indicators shaping cycling conditions and conflate them in a quantitative index. Much research involves site visits or conventional geospatial approaches, and few studies have leveraged street view imagery (SVI) for conducting virtual audits. These have assessed a limited range of aspects, and not all have been automated using computer vision (CV). Furthermore, studies have not yet zeroed in on gauging the usability of these technologies thoroughly. We investigate, with experiments at a fine spatial scale and across multiple geographies (Singapore and Tokyo), whether we can use SVI and CV to assess bikeability comprehensively. Extending related work, we develop an exhaustive index of bikeability composed of 34 indicators. The results suggest that SVI and CV are adequate to evaluate bikeability in cities comprehensively. As they outperformed non-SVI counterparts by a wide margin, SVI indicators are also found to be superior in assessing urban bikeability, and potentially can be used independently, replacing traditional techniques. However, the paper exposes some limitations, suggesting that the best way forward is combining both SVI and non-SVI approaches. The new bikeability index presents a contribution in transportation and urban analytics, and it is scalable to assess cycling appeal widely.