Abstract:Novelty is a core component of academic papers, and there are multiple perspectives on the assessment of novelty. Existing methods often focus on word or entity combinations, which provide limited insights. The content related to a paper's novelty is typically distributed across different core sections, e.g., Introduction, Methodology and Results. Therefore, exploring the optimal combination of sections for evaluating the novelty of a paper is important for advancing automated novelty assessment. In this paper, we utilize different combinations of sections from academic papers as inputs to drive language models to predict novelty scores. We then analyze the results to determine the optimal section combinations for novelty score prediction. We first employ natural language processing techniques to identify the sectional structure of academic papers, categorizing them into introduction, methods, results, and discussion (IMRaD). Subsequently, we used different combinations of these sections (e.g., introduction and methods) as inputs for pretrained language models (PLMs) and large language models (LLMs), employing novelty scores provided by human expert reviewers as ground truth labels to obtain prediction results. The results indicate that using introduction, results and discussion is most appropriate for assessing the novelty of a paper, while the use of the entire text does not yield significant results. Furthermore, based on the results of the PLMs and LLMs, the introduction and results appear to be the most important section for the task of novelty score prediction. The code and dataset for this paper can be accessed at https://github.com/njust-winchy/SC4ANM.
Abstract:Abstractive summarization of scientific papers has always been a research focus, yet existing methods face two main challenges. First, most summarization models rely on Encoder-Decoder architectures that treat papers as sequences of words, thus fail to fully capture the structured information inherent in scientific papers. Second, existing research often use keyword mapping or feature engineering to identify the structural information, but these methods struggle with the structural flexibility of scientific papers and lack robustness across different disciplines. To address these challenges, we propose a two-stage abstractive summarization framework that leverages automatic recognition of structural functions within scientific papers. In the first stage, we standardize chapter titles from numerous scientific papers and construct a large-scale dataset for structural function recognition. A classifier is then trained to automatically identify the key structural components (e.g., Background, Methods, Results, Discussion), which provides a foundation for generating more balanced summaries. In the second stage, we employ Longformer to capture rich contextual relationships across sections and generating context-aware summaries. Experiments conducted on two domain-specific scientific paper summarization datasets demonstrate that our method outperforms advanced baselines, and generates more comprehensive summaries. The code and dataset can be accessed at https://github.com/tongbao96/code-for-SFR-AS.
Abstract:Large Language Models (LLMs), such as ChatGPT, have prompted academic concerns about their impact on academic writing. Existing studies have primarily examined LLM usage in academic writing through quantitative approaches, such as word frequency statistics and probability-based analyses. However, few have systematically examined the potential impact of LLMs on the linguistic characteristics of academic writing. To address this gap, we conducted a large-scale analysis across 823,798 abstracts published in last decade from arXiv dataset. Through the linguistic analysis of features such as the frequency of LLM-preferred words, lexical complexity, syntactic complexity, cohesion, readability and sentiment, the results indicate a significant increase in the proportion of LLM-preferred words in abstracts, revealing the widespread influence of LLMs on academic writing. Additionally, we observed an increase in lexical complexity and sentiment in the abstracts, but a decrease in syntactic complexity, suggesting that LLMs introduce more new vocabulary and simplify sentence structure. However, the significant decrease in cohesion and readability indicates that abstracts have fewer connecting words and are becoming more difficult to read. Moreover, our analysis reveals that scholars with weaker English proficiency were more likely to use the LLMs for academic writing, and focused on improving the overall logic and fluency of the abstracts. Finally, at discipline level, we found that scholars in Computer Science showed more pronounced changes in writing style, while the changes in Mathematics were minimal.
Abstract:A spatial modulation-aided orthogonal time frequency space (SM-OTFS) scheme is proposed for high-Doppler scenarios, which relies on a low-complexity distance-based detection algorithm. We first derive the delay-Doppler (DD) domain input-output relationship of our SM-OTFS system by exploiting an SM mapper, followed by characterizing the doubly-selective channels considered. Then we propose a distance-based ordering subspace check detector (DOSCD) exploiting the \emph{a priori} information of the transmit symbol vector. Moreover, we derive the discrete-input continuous-output memoryless channel (DCMC) capacity of the system. Finally, our simulation results demonstrate that the proposed SM-OTFS system outperforms the conventional single-input-multiple-output (SIMO)-OTFS system, and that the DOSCD conceived is capable of striking an attractive bit error ratio (BER) vs. complexity trade-off.