What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Aug 07, 2025
Abstract:The term 'agent' in artificial intelligence has long carried multiple interpretations across different subfields. Recent developments in AI capabilities, particularly in large language model systems, have amplified this ambiguity, creating significant challenges in research communication, system evaluation and reproducibility, and policy development. This paper argues that the term 'agent' requires redefinition. Drawing from historical analysis and contemporary usage patterns, we propose a framework that defines clear minimum requirements for a system to be considered an agent while characterizing systems along a multidimensional spectrum of environmental interaction, learning and adaptation, autonomy, goal complexity, and temporal coherence. This approach provides precise vocabulary for system description while preserving the term's historically multifaceted nature. After examining potential counterarguments and implementation challenges, we provide specific recommendations for moving forward as a field, including suggestions for terminology standardization and framework adoption. The proposed approach offers practical tools for improving research clarity and reproducibility while supporting more effective policy development.
* Accepted to AIES 2025
Via

Aug 07, 2025
Abstract:Natural language explanations in recommender systems are often framed as a review generation task, leveraging user reviews as ground-truth supervision. While convenient, this approach conflates a user's opinion with the system's reasoning, leading to explanations that may be fluent but fail to reflect the true logic behind recommendations. In this work, we revisit the core objective of explainable recommendation: to transparently communicate why an item is recommended by linking user needs to relevant item features. Through a comprehensive analysis of existing methods across multiple benchmark datasets, we identify common limitations-explanations that are weakly aligned with model predictions, vague or inaccurate in identifying user intents, and overly repetitive or generic. To overcome these challenges, we propose FIRE, a lightweight and interpretable framework that combines SHAP-based feature attribution with structured, prompt-driven language generation. FIRE produces faithful, diverse, and user-aligned explanations, grounded in the actual decision-making process of the model. Our results demonstrate that FIRE not only achieves competitive recommendation accuracy but also significantly improves explanation quality along critical dimensions such as alignment, structure, and faithfulness. This work highlights the need to move beyond the review-as-explanation paradigm and toward explanation methods that are both accountable and interpretable.
Via

Aug 07, 2025
Abstract:With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
Via

Aug 07, 2025
Abstract:Social recommendation, which seeks to leverage social ties among users to alleviate the sparsity issue of user-item interactions, has emerged as a popular technique for elevating personalized services in recommender systems. Despite being effective, existing social recommendation models are mainly devised for recommending regular items such as blogs, images, and products, and largely fail for community recommendations due to overlooking the unique characteristics of communities. Distinctly, communities are constituted by individuals, who present high dynamicity and relate to rich structural patterns in social networks. To our knowledge, limited research has been devoted to comprehensively exploiting this information for recommending communities. To bridge this gap, this paper presents CASO, a novel and effective model specially designed for social community recommendation. Under the hood, CASO harnesses three carefully-crafted encoders for user embedding, wherein two of them extract community-related global and local structures from the social network via social modularity maximization and social closeness aggregation, while the third one captures user preferences using collaborative filtering with observed user-community affiliations. To further eliminate feature redundancy therein, we introduce a mutual exclusion between social and collaborative signals. Finally, CASO includes a community detection loss in the model optimization, thereby producing community-aware embeddings for communities. Our extensive experiments evaluating CASO against nine strong baselines on six real-world social networks demonstrate its consistent and remarkable superiority over the state of the art in terms of community recommendation performance.
* This is the technical report of the paper "Community-Aware Social
Community Recommendation" accepted by CIKM 2025
Via

Aug 07, 2025
Abstract:This paper presents an investigation into the impact of adding adjustment features to an existing sign language (SL) avatar on a Microsoft Hololens 2 device. Through a detailed analysis of interactions of expert German Sign Language (DGS) users with both adjustable and non-adjustable avatars in a specific use case, this study identifies the key factors influencing the comprehensibility, the user experience (UX), and the acceptability of such a system. Despite user preference for adjustable settings, no significant improvements in UX or comprehensibility were observed, which remained at low levels, amid missing SL elements (mouthings and facial expressions) and implementation issues (indistinct hand shapes, lack of feedback and menu positioning). Hedonic quality was rated higher than pragmatic quality, indicating that users found the system more emotionally or aesthetically pleasing than functionally useful. Stress levels were higher for the adjustable avatar, reflecting lower performance, greater effort and more frustration. Additionally, concerns were raised about whether the Hololens adjustment gestures are intuitive and easy to familiarise oneself with. While acceptability of the concept of adjustability was generally positive, it was strongly dependent on usability and animation quality. This study highlights that personalisation alone is insufficient, and that SL avatars must be comprehensible by default. Key recommendations include enhancing mouthing and facial animation, improving interaction interfaces, and applying participatory design.
Via

Aug 07, 2025
Abstract:The sequential recommendation system utilizes historical user interactions to predict preferences. Effectively integrating diverse user behavior patterns with rich multimodal information of items to enhance the accuracy of sequential recommendations is an emerging and challenging research direction. This paper focuses on the problem of multi-modal multi-behavior sequential recommendation, aiming to address the following challenges: (1) the lack of effective characterization of modal preferences across different behaviors, as user attention to different item modalities varies depending on the behavior; (2) the difficulty of effectively mitigating implicit noise in user behavior, such as unintended actions like accidental clicks; (3) the inability to handle modality noise in multi-modal representations, which further impacts the accurate modeling of user preferences. To tackle these issues, we propose a novel Multi-Modal Multi-Behavior Sequential Recommendation model (M$^3$BSR). This model first removes noise in multi-modal representations using a Conditional Diffusion Modality Denoising Layer. Subsequently, it utilizes deep behavioral information to guide the denoising of shallow behavioral data, thereby alleviating the impact of noise in implicit feedback through Conditional Diffusion Behavior Denoising. Finally, by introducing a Multi-Expert Interest Extraction Layer, M$^3$BSR explicitly models the common and specific interests across behaviors and modalities to enhance recommendation performance. Experimental results indicate that M$^3$BSR significantly outperforms existing state-of-the-art methods on benchmark datasets.
* SIGIR 2025: Proceedings of the 48th International ACM SIGIR
Conference on Research and Development in Information Retrieval Pages 1593 -
1602
* SIGIR 2025
Via

Aug 06, 2025
Abstract:Graphical user interface (GUI) agents have shown promise in automating mobile tasks but still struggle with input redundancy and decision ambiguity. In this paper, we present \textbf{RecAgent}, an uncertainty-aware agent that addresses these issues through adaptive perception. We distinguish two types of uncertainty in GUI navigation: (1) perceptual uncertainty, caused by input redundancy and noise from comprehensive screen information, and (2) decision uncertainty, arising from ambiguous tasks and complex reasoning. To reduce perceptual uncertainty, RecAgent employs a component recommendation mechanism that identifies and focuses on the most relevant UI elements. For decision uncertainty, it uses an interactive module to request user feedback in ambiguous situations, enabling intent-aware decisions. These components are integrated into a unified framework that proactively reduces input complexity and reacts to high-uncertainty cases via human-in-the-loop refinement. Additionally, we propose a dataset called \textbf{ComplexAction} to evaluate the success rate of GUI agents in executing specified single-step actions within complex scenarios. Extensive experiments validate the effectiveness of our approach. The dataset and code will be available at https://github.com/Fanye12/RecAgent.
Via

Aug 06, 2025
Abstract:Counterspeech, i.e. the practice of responding to online hate speech, has gained traction in NLP as a promising intervention. While early work emphasised collaboration with non-governmental organisation stakeholders, recent research trends have shifted toward automated pipelines that reuse a small set of legacy datasets, often without input from affected communities. This paper presents a systematic review of 74 NLP studies on counterspeech, analysing the extent to which stakeholder participation influences dataset creation, model development, and evaluation. To complement this analysis, we conducted a participatory case study with five NGOs specialising in online Gender-Based Violence (oGBV), identifying stakeholder-informed practices for counterspeech generation. Our findings reveal a growing disconnect between current NLP research and the needs of communities most impacted by toxic online content. We conclude with concrete recommendations for re-centring stakeholder expertise in counterspeech research.
Via

Aug 06, 2025
Abstract:Reliable evaluation of machine learning models for neonatal seizure detection is critical for clinical adoption. Current practices often rely on inconsistent and biased metrics, hindering model comparability and interpretability. Expert-level claims about AI performance are frequently made without rigorous validation, raising concerns about their reliability. This study aims to systematically evaluate common performance metrics and propose best practices tailored to the specific challenges of neonatal seizure detection. Using real and synthetic seizure annotations, we assessed standard performance metrics, consensus strategies, and human-expert level equivalence tests under varying class imbalance, inter-rater agreement, and number of raters. Matthews and Pearson's correlation coefficients outperformed the area under the curve in reflecting performance under class imbalance. Consensus types are sensitive to the number of raters and agreement level among them. Among human-expert level equivalence tests, the multi-rater Turing test using Fleiss k best captured expert-level AI performance. We recommend reporting: (1) at least one balanced metric, (2) Sensitivity, specificity, PPV and NPV, (3) Multi-rater Turing test results using Fleiss k, and (4) All the above on held-out validation set. This proposed framework provides an important prerequisite to clinical validation by enabling a thorough and honest appraisal of AI methods for neonatal seizure detection.
* Submitted for possible publication at IEEE Journal of Biomedical and
Health Informatics
Via

Aug 06, 2025
Abstract:The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
* Accepted to CIKM 2025
Via
