Abstract:With the advancement of AI-based speech synthesis technologies such as Deep Voice, there is an increasing risk of voice spoofing attacks, including voice phishing and fake news, through unauthorized use of others' voices. Existing defenses that inject adversarial perturbations directly into audio signals have limited effectiveness, as these perturbations can easily be neutralized by speech enhancement methods. To overcome this limitation, we propose RoVo (Robust Voice), a novel proactive defense technique that injects adversarial perturbations into high-dimensional embedding vectors of audio signals, reconstructing them into protected speech. This approach effectively defends against speech synthesis attacks and also provides strong resistance to speech enhancement models, which represent a secondary attack threat. In extensive experiments, RoVo increased the Defense Success Rate (DSR) by over 70% compared to unprotected speech, across four state-of-the-art speech synthesis models. Specifically, RoVo achieved a DSR of 99.5% on a commercial speaker-verification API, effectively neutralizing speech synthesis attack. Moreover, RoVo's perturbations remained robust even under strong speech enhancement conditions, outperforming traditional methods. A user study confirmed that RoVo preserves both naturalness and usability of protected speech, highlighting its effectiveness in complex and evolving threat scenarios.
Abstract:The advent of convenient and efficient fully unmanned stores equipped with artificial intelligence-based automated checkout systems marks a new era in retail. However, these systems have inherent artificial intelligence security vulnerabilities, which are exploited via adversarial patch attacks, particularly in physical environments. This study demonstrated that adversarial patches can severely disrupt object detection models used in unmanned stores, leading to issues such as theft, inventory discrepancies, and interference. We investigated three types of adversarial patch attacks -- Hiding, Creating, and Altering attacks -- and highlighted their effectiveness. We also introduce the novel color histogram similarity loss function by leveraging attacker knowledge of the color information of a target class object. Besides the traditional confusion-matrix-based attack success rate, we introduce a new bounding-boxes-based metric to analyze the practical impact of these attacks. Starting with attacks on object detection models trained on snack and fruit datasets in a digital environment, we evaluated the effectiveness of adversarial patches in a physical testbed that mimicked a real unmanned store with RGB cameras and realistic conditions. Furthermore, we assessed the robustness of these attacks in black-box scenarios, demonstrating that shadow attacks can enhance success rates of attacks even without direct access to model parameters. Our study underscores the necessity for robust defense strategies to protect unmanned stores from adversarial threats. Highlighting the limitations of the current defense mechanisms in real-time detection systems and discussing various proactive measures, we provide insights into improving the robustness of object detection models and fortifying unmanned retail environments against these attacks.