Abstract:We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
Abstract:Recent studies in medical question answering (Medical QA) have actively explored the integration of large language models (LLMs) with biomedical knowledge graphs (KGs) to improve factual accuracy. However, most existing approaches still rely on traversing the entire KG or performing large-scale retrieval, which introduces substantial noise and leads to unstable multi-hop reasoning. We argue that the core challenge lies not in expanding access to knowledge, but in identifying and reasoning over the appropriate subset of evidence for each query. ReGraM is a region-first knowledge graph reasoning framework that addresses this challenge by constructing a query-aligned subgraph and performing stepwise reasoning constrained to this localized region under multiple evidence aware modes. By focusing inference on only the most relevant portion of the KG, ReGraM departs from the assumption that all relations are equally useful an assumption that rarely holds in domain-specific medical settings. Experiments on seven medical QA benchmarks demonstrate that ReGraM consistently outperforms a strong baseline (KGARevion), achieving an 8.04% absolute accuracy gain on MCQ, a 4.50% gain on SAQ, and a 42.9% reduction in hallucination rate. Ablation and qualitative analyses further show that aligning region construction with hop-wise reasoning is the primary driver of these improvements. Overall, our results highlight region-first KG reasoning as an effective paradigm for improving factual accuracy and consistency in medical QA.
Abstract:Recent LLMs increasingly integrate reasoning mechanisms like Chain-of-Thought (CoT). However, this explicit reasoning exposes a new attack surface for inference-time backdoors, which inject malicious reasoning paths without altering model parameters. Because these attacks generate linguistically coherent paths, they effectively evade conventional detection. To address this, we propose STAR (State-Transition Amplification Ratio), a framework that detects backdoors by analyzing output probability shifts. STAR exploits the statistical discrepancy where a malicious input-induced path exhibits high posterior probability despite a low prior probability in the model's general knowledge. We quantify this state-transition amplification and employ the CUSUM algorithm to detect persistent anomalies. Experiments across diverse models (8B-70B) and five benchmark datasets demonstrate that STAR exhibits robust generalization capabilities, consistently achieving near-perfect performance (AUROC $\approx$ 1.0) with approximately $42\times$ greater efficiency than existing baselines. Furthermore, the framework proves robust against adaptive attacks attempting to bypass detection.
Abstract:Brain-computer interfaces (BCIs) show enormous potential for advancing personalized medicine. However, BCIs also introduce new avenues for cyber-attacks or security compromises. In this article, we analyze the problem and make recommendations for device manufacturers to better secure devices and to help regulators understand where more guidance is needed to protect patient safety and data confidentiality. Device manufacturers should implement the prior suggestions in their BCI products. These recommendations help protect BCI users from undue risks, including compromised personal health and genetic information, unintended BCI-mediated movement, and many other cybersecurity breaches. Regulators should mandate non-surgical device update methods, strong authentication and authorization schemes for BCI software modifications, encryption of data moving to and from the brain, and minimize network connectivity where possible. We also design a hypothetical, average-case threat model that identifies possible cybersecurity threats to BCI patients and predicts the likeliness of risk for each category of threat. BCIs are at less risk of physical compromise or attack, but are vulnerable to remote attack; we focus on possible threats via network paths to BCIs and suggest technical controls to limit network connections.
Abstract:Literary translation requires preserving cultural nuances and stylistic elements, which traditional metrics like BLEU and METEOR fail to assess due to their focus on lexical overlap. This oversight neglects the narrative consistency and stylistic fidelity that are crucial for literary works. To address this, we propose MAS-LitEval, a multi-agent system using Large Language Models (LLMs) to evaluate translations based on terminology, narrative, and style. We tested MAS-LitEval on translations of The Little Prince and A Connecticut Yankee in King Arthur's Court, generated by various LLMs, and compared it to traditional metrics. \textbf{MAS-LitEval} outperformed these metrics, with top models scoring up to 0.890 in capturing literary nuances. This work introduces a scalable, nuanced framework for Translation Quality Assessment (TQA), offering a practical tool for translators and researchers.
Abstract:With the advancement of AI-based speech synthesis technologies such as Deep Voice, there is an increasing risk of voice spoofing attacks, including voice phishing and fake news, through unauthorized use of others' voices. Existing defenses that inject adversarial perturbations directly into audio signals have limited effectiveness, as these perturbations can easily be neutralized by speech enhancement methods. To overcome this limitation, we propose RoVo (Robust Voice), a novel proactive defense technique that injects adversarial perturbations into high-dimensional embedding vectors of audio signals, reconstructing them into protected speech. This approach effectively defends against speech synthesis attacks and also provides strong resistance to speech enhancement models, which represent a secondary attack threat. In extensive experiments, RoVo increased the Defense Success Rate (DSR) by over 70% compared to unprotected speech, across four state-of-the-art speech synthesis models. Specifically, RoVo achieved a DSR of 99.5% on a commercial speaker-verification API, effectively neutralizing speech synthesis attack. Moreover, RoVo's perturbations remained robust even under strong speech enhancement conditions, outperforming traditional methods. A user study confirmed that RoVo preserves both naturalness and usability of protected speech, highlighting its effectiveness in complex and evolving threat scenarios.
Abstract:The advent of convenient and efficient fully unmanned stores equipped with artificial intelligence-based automated checkout systems marks a new era in retail. However, these systems have inherent artificial intelligence security vulnerabilities, which are exploited via adversarial patch attacks, particularly in physical environments. This study demonstrated that adversarial patches can severely disrupt object detection models used in unmanned stores, leading to issues such as theft, inventory discrepancies, and interference. We investigated three types of adversarial patch attacks -- Hiding, Creating, and Altering attacks -- and highlighted their effectiveness. We also introduce the novel color histogram similarity loss function by leveraging attacker knowledge of the color information of a target class object. Besides the traditional confusion-matrix-based attack success rate, we introduce a new bounding-boxes-based metric to analyze the practical impact of these attacks. Starting with attacks on object detection models trained on snack and fruit datasets in a digital environment, we evaluated the effectiveness of adversarial patches in a physical testbed that mimicked a real unmanned store with RGB cameras and realistic conditions. Furthermore, we assessed the robustness of these attacks in black-box scenarios, demonstrating that shadow attacks can enhance success rates of attacks even without direct access to model parameters. Our study underscores the necessity for robust defense strategies to protect unmanned stores from adversarial threats. Highlighting the limitations of the current defense mechanisms in real-time detection systems and discussing various proactive measures, we provide insights into improving the robustness of object detection models and fortifying unmanned retail environments against these attacks.