Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.




Diffusion models excel at generating high-quality, diverse samples, yet they risk memorizing training data when overfit to the training objective. We analyze the distinctions between memorization and generalization in diffusion models through the lens of representation learning. By investigating a two-layer ReLU denoising autoencoder (DAE), we prove that (i) memorization corresponds to the model storing raw training samples in the learned weights for encoding and decoding, yielding localized "spiky" representations, whereas (ii) generalization arises when the model captures local data statistics, producing "balanced" representations. Furthermore, we validate these theoretical findings on real-world unconditional and text-to-image diffusion models, demonstrating that the same representation structures emerge in deep generative models with significant practical implications. Building on these insights, we propose a representation-based method for detecting memorization and a training-free editing technique that allows precise control via representation steering. Together, our results highlight that learning good representations is central to novel and meaningful generative modeling.



Large-scale networked multi-agent systems increasingly underpin critical infrastructure, yet their collective behavior can drift toward undesirable emergent norms that elude conventional governance mechanisms. We introduce an adaptive accountability framework that (i) continuously traces responsibility flows through a lifecycle-aware audit ledger, (ii) detects harmful emergent norms online via decentralized sequential hypothesis tests, and (iii) deploys local policy and reward-shaping interventions that realign agents with system-level objectives in near real time. We prove a bounded-compromise theorem showing that whenever the expected intervention cost exceeds an adversary's payoff, the long-run proportion of compromised interactions is bounded by a constant strictly less than one. Extensive high-performance simulations with up to 100 heterogeneous agents, partial observability, and stochastic communication graphs show that our framework prevents collusion and resource hoarding in at least 90% of configurations, boosts average collective reward by 12-18%, and lowers the Gini inequality index by up to 33% relative to a PPO baseline. These results demonstrate that a theoretically principled accountability layer can induce ethically aligned, self-regulating behavior in complex MAS without sacrificing performance or scalability.




Recent advances in 3D scene generation produce visually appealing output, but current representations hinder artists' workflows that require modifiable 3D textured mesh scenes for visual effects and game development. Despite significant advances, current textured mesh scene reconstruction methods are far from artist ready, suffering from incorrect object decomposition, inaccurate spatial relationships, and missing backgrounds. We present 3D-RE-GEN, a compositional framework that reconstructs a single image into textured 3D objects and a background. We show that combining state of the art models from specific domains achieves state of the art scene reconstruction performance, addressing artists' requirements. Our reconstruction pipeline integrates models for asset detection, reconstruction, and placement, pushing certain models beyond their originally intended domains. Obtaining occluded objects is treated as an image editing task with generative models to infer and reconstruct with scene level reasoning under consistent lighting and geometry. Unlike current methods, 3D-RE-GEN generates a comprehensive background that spatially constrains objects during optimization and provides a foundation for realistic lighting and simulation tasks in visual effects and games. To obtain physically realistic layouts, we employ a novel 4-DoF differentiable optimization that aligns reconstructed objects with the estimated ground plane. 3D-RE-GEN~achieves state of the art performance in single image 3D scene reconstruction, producing coherent, modifiable scenes through compositional generation guided by precise camera recovery and spatial optimization.
Grasping is one of the most fundamental challenging capabilities in robotic manipulation, especially in unstructured, cluttered, and semantically diverse environments. Recent researches have increasingly explored language-guided manipulation, where robots not only perceive the scene but also interpret task-relevant natural language instructions. However, existing language-conditioned grasping methods typically rely on shallow fusion strategies, leading to limited semantic grounding and weak alignment between linguistic intent and visual grasp reasoning.In this work, we propose Language-Guided Grasp Detection (LGGD) with a coarse-to-fine learning paradigm for robotic manipulation. LGGD leverages CLIP-based visual and textual embeddings within a hierarchical cross-modal fusion pipeline, progressively injecting linguistic cues into the visual feature reconstruction process. This design enables fine-grained visual-semantic alignment and improves the feasibility of the predicted grasps with respect to task instructions. In addition, we introduce a language-conditioned dynamic convolution head (LDCH) that mixes multiple convolution experts based on sentence-level features, enabling instruction-adaptive coarse mask and grasp predictions. A final refinement module further enhances grasp consistency and robustness in complex scenes.Experiments on the OCID-VLG and Grasp-Anything++ datasets show that LGGD surpasses existing language-guided grasping methods, exhibiting strong generalization to unseen objects and diverse language queries. Moreover, deployment on a real robotic platform demonstrates the practical effectiveness of our approach in executing accurate, instruction-conditioned grasp actions. The code will be released publicly upon acceptance.
The purpose of this project is to assess how well defenders can detect DNS-over-HTTPS (DoH) file exfiltration, and which evasion strategies can be used by attackers. While providing a reproducible toolkit to generate, intercept and analyze DoH exfiltration, and comparing Machine Learning vs threshold-based detection under adversarial scenarios. The originality of this project is the introduction of an end-to-end, containerized pipeline that generates configurable file exfiltration over DoH using several parameters (e.g., chunking, encoding, padding, resolver rotation). It allows for file reconstruction at the resolver side, while extracting flow-level features using a fork of DoHLyzer. The pipeline contains a prediction side, which allows the training of machine learning models based on public labelled datasets and then evaluates them side-by-side with threshold-based detection methods against malicious and evasive DNS-Over-HTTPS traffic. We train Random Forest, Gradient Boosting and Logistic Regression classifiers on a public DoH dataset and benchmark them against evasive DoH exfiltration scenarios. The toolkit orchestrates traffic generation, file capture, feature extraction, model training and analysis. The toolkit is then encapsulated into several Docker containers for easy setup and full reproducibility regardless of the platform it is run on. Future research regarding this project is directed at validating the results on mixed enterprise traffic, extending the protocol coverage to HTTP/3/QUIC request, adding a benign traffic generation, and working on real-time traffic evaluation. A key objective is to quantify when stealth constraints make DoH exfiltration uneconomical and unworthy for the attacker.




The source detection problem arises when an epidemic process unfolds over a contact network, and the objective is to identify its point of origin, i.e., the source node. Research on this problem began with the seminal work of Shah and Zaman in 2010, who formally defined it and introduced the notion of rumor centrality. With the emergence of Graph Neural Networks (GNNs), several studies have proposed GNN-based approaches to source detection. However, some of these works lack methodological clarity and/or are hard to reproduce. As a result, it remains unclear (to us, at least) whether GNNs truly outperform more traditional source detection methods across comparable settings. In this paper, we first review existing GNN-based methods for source detection, clearly outlining the specific settings each addresses and the models they employ. Building on this research, we propose a principled GNN architecture tailored to the source detection task. We also systematically investigate key questions surrounding this problem. Most importantly, we aim to provide a definitive assessment of how GNNs perform relative to other source detection methods. Our experiments show that GNNs substantially outperform all other methods we test across a variety of network types. Although we initially set out to challenge the notion of GNNs as a solution to source detection, our results instead demonstrate their remarkable effectiveness for this task. We discuss possible reasons for this strong performance. To ensure full reproducibility, we release all code and data on GitHub. Finally, we argue that epidemic source detection should serve as a benchmark task for evaluating GNN architectures.
While current multimodal models can answer questions based on 2D images, they lack intrinsic 3D object perception, limiting their ability to comprehend spatial relationships and depth cues in 3D scenes. In this work, we propose N3D-VLM, a novel unified framework that seamlessly integrates native 3D object perception with 3D-aware visual reasoning, enabling both precise 3D grounding and interpretable spatial understanding. Unlike conventional end-to-end models that directly predict answers from RGB/RGB-D inputs, our approach equips the model with native 3D object perception capabilities, enabling it to directly localize objects in 3D space based on textual descriptions. Building upon accurate 3D object localization, the model further performs explicit reasoning in 3D, achieving more interpretable and structured spatial understanding. To support robust training for these capabilities, we develop a scalable data construction pipeline that leverages depth estimation to lift large-scale 2D annotations into 3D space, significantly increasing the diversity and coverage for 3D object grounding data, yielding over six times larger than the largest existing single-image 3D detection dataset. Moreover, the pipeline generates spatial question-answering datasets that target chain-of-thought (CoT) reasoning in 3D, facilitating joint training for both 3D object localization and 3D spatial reasoning. Experimental results demonstrate that our unified framework not only achieves state-of-the-art performance on 3D grounding tasks, but also consistently surpasses existing methods in 3D spatial reasoning in vision-language model.




This paper studies the use of Conflict-Driven Clause Learning (CDCL) with VSIDS heuristics as a computational engine for discrete facility layout problems. The facility layout problem is modeled as a combinatorial assignment problem with dense logical structure arising from adjacency, separation, and slot-availability constraints. We develop a CNF-based formulation for layout feasibility and compare CDCL-based SAT solving against CP-SAT and MILP formulations under a unified benchmarking framework. Empirical results show that CDCL exhibits near-constant runtime behavior for feasibility detection across increasing problem sizes and constraint densities, while CP-SAT and MILP display polynomial and exponential scaling respectively. To address the limitation of CDCL in objective optimization, we introduce two hybrid architectures that combine CDCL-based feasibility search with CP-SAT optimization. The first architecture rapidly enumerates feasible layouts to trade optimality for speed, while the second uses CDCL to generate warm-start solutions that accelerate exact optimization. The results demonstrate that hybrid approaches can significantly reduce time-to-solution while preserving correctness guarantees, clarifying the algorithmic trade-offs between clause-learning search and exact optimization methods in large-scale discrete layout problems.
Context: Exhaustive fuzzing of modern JavaScript engines is infeasible due to the vast number of program states and execution paths. Coverage-guided fuzzers waste effort on low-risk inputs, often ignoring vulnerability-triggering ones that do not increase coverage. Existing heuristics proposed to mitigate this require expert effort, are brittle, and hard to adapt. Objective: We propose a data-centric, LLM-boosted alternative that learns from historical vulnerabilities to automatically identify minimal static (code) and dynamic (runtime) features for detecting high-risk inputs. Method: Guided by historical V8 bugs, iterative prompting generated 115 static and 49 dynamic features, with the latter requiring only five trace flags, minimizing instrumentation cost. After feature selection, 41 features remained to train an XGBoost model to predict high-risk inputs during fuzzing. Results: Combining static and dynamic features yields over 85% precision and under 1% false alarms. Only 25% of these features are needed for comparable performance, showing that most of the search space is irrelevant. Conclusion: This work introduces feature-guided fuzzing, an automated data-driven approach that replaces coverage with data-directed inference, guiding fuzzers toward high-risk states for faster, targeted, and reproducible vulnerability discovery. To support open science, all scripts and data are available at https://github.com/KKGanguly/DataCentricFuzzJS .




Object counting in complex scenes remains challenging, particularly in the zero-shot setting, where the goal is to count instances of unseen categories specified only by a class name. Existing zero-shot object counting (ZOC) methods that infer exemplars from text either rely on open-vocabulary detectors, which often yield multi-instance candidates, or on random patch sampling, which fails to accurately delineate object instances. To address this, we propose CountZES, a training-free framework for object counting via zero-shot exemplar selection. CountZES progressively discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines open-vocabulary detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a diverse, complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across natural, aerial and medical domains.