Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Mobile reconstruction for autonomous aerial robotics holds strong potential for critical applications such as tele-guidance and disaster response. These tasks demand both accurate 3D reconstruction and fast scene processing. Instead of reconstructing the entire scene in detail, it is often more efficient to focus on specific objects, i.e., points of interest (PoIs). Mobile robots equipped with advanced sensing can usually detect these early during data acquisition or preliminary analysis, reducing the need for full-scene optimization. Gaussian Splatting (GS) has recently shown promise in delivering high-quality novel view synthesis and 3D representation by an incremental learning process. Extending GS with scene editing, semantics adds useful per-splat features to isolate objects effectively. Semantic 3D Gaussian editing can already be achieved before the full training cycle is completed, reducing the overall training time. Moreover, the semantically relevant area, the PoI, is usually already known during capturing. To balance high-quality reconstruction with reduced training time, we propose CoRe-GS. We first generate a coarse segmentation-ready scene with semantic GS and then refine it for the semantic object using our novel color-based effective filtering for effective object isolation. This is speeding up the training process to be about a quarter less than a full training cycle for semantic GS. We evaluate our approach on two datasets, SCRREAM (real-world, outdoor) and NeRDS 360 (synthetic, indoor), showing reduced runtime and higher novel-view-synthesis quality.
Timely and accurate floodwater depth estimation is critical for road accessibility and emergency response. While recent computer vision methods have enabled flood detection, they suffer from both accuracy limitations and poor generalization due to dependence on fixed object detectors and task-specific training. To enable accurate depth estimation that can generalize across diverse flood scenarios, this paper presents FloodVision, a zero-shot framework that combines the semantic reasoning abilities of the foundation vision-language model GPT-4o with a structured domain knowledge graph. The knowledge graph encodes canonical real-world dimensions for common urban objects including vehicles, people, and infrastructure elements to ground the model's reasoning in physical reality. FloodVision dynamically identifies visible reference objects in RGB images, retrieves verified heights from the knowledge graph to mitigate hallucination, estimates submergence ratios, and applies statistical outlier filtering to compute final depth values. Evaluated on 110 crowdsourced images from MyCoast New York, FloodVision achieves a mean absolute error of 8.17 cm, reducing the GPT-4o baseline 10.28 cm by 20.5% and surpassing prior CNN-based methods. The system generalizes well across varying scenes and operates in near real-time, making it suitable for future integration into digital twin platforms and citizen-reporting apps for smart city flood resilience.
Anomaly detection, which aims to identify anomalies deviating from normal patterns, is challenging due to the limited amount of normal data available. Unlike most existing unified methods that rely on carefully designed image feature extractors and memory banks to capture logical relationships between objects, we introduce a text memory bank to enhance the detection of logical anomalies. Specifically, we propose a Three-Memory framework for Unified structural and logical Anomaly Detection (TMUAD). First, we build a class-level text memory bank for logical anomaly detection by the proposed logic-aware text extractor, which can capture rich logical descriptions of objects from input images. Second, we construct an object-level image memory bank that preserves complete object contours by extracting features from segmented objects. Third, we employ visual encoders to extract patch-level image features for constructing a patch-level memory bank for structural anomaly detection. These three complementary memory banks are used to retrieve and compare normal images that are most similar to the query image, compute anomaly scores at multiple levels, and fuse them into a final anomaly score. By unifying structural and logical anomaly detection through collaborative memory banks, TMUAD achieves state-of-the-art performance across seven publicly available datasets involving industrial and medical domains. The model and code are available at https://github.com/SIA-IDE/TMUAD.
Reliable slow-moving weak target detection in complicated environments is challenging due to the masking effects from the surrounding strong reflectors. The traditional Moving Target Indication (MTI) may suppress the echoes from not only the static interference objects (IOs), but also the desired slow-moving weak target. According to the low-rank and sparse properties of the range-velocity maps across different radar scans, a novel clutter suppression scheme based on the Go decomposition (Godec) framework is proposed in this paper. The simulation results show that with the existence of masking effects, the target detection scheme based on Godec clutter suppression can reliably detect the slow-moving weak target, compared to the traditional MTI-based scheme. Besides, the time consumption comparison is conducted, demonstrating that the proposed solution is one that sacrifices time complexity in exchange for enhanced reliability. Additionally, the tradeoffs among the number of false alarm cells, the detection probability and the iteration times for convergence have been revealed, guiding parameter settings of the proposed solution in practical applications. Experiment validation is also conducted to verify the proposed solution, providing further insight into the scenarios where the solution is most applicable.




End-to-end object detectors offer a promising NMS-free paradigm for real-time applications, yet their high computational cost remains a significant barrier, particularly for complex scenarios like intersection traffic monitoring. To address this challenge, we propose FlowDet, a high-speed detector featuring a decoupled encoder optimization strategy applied to the DETR architecture. Specifically, FlowDet employs a novel Geometric Deformable Unit (GDU) for traffic-aware geometric modeling and a Scale-Aware Attention (SAA) module to maintain high representational power across extreme scale variations. To rigorously evaluate the model's performance in environments with severe occlusion and high object density, we collected the Intersection-Flow-5k dataset, a new challenging scene for this task. Evaluated on Intersection-Flow-5k, FlowDet establishes a new state-of-the-art. Compared to the strong RT-DETR baseline, it improves AP(test) by 1.5% and AP50(test) by 1.6%, while simultaneously reducing GFLOPs by 63.2% and increasing inference speed by 16.2%. Our work demonstrates a new path towards building highly efficient and accurate detectors for demanding, real-world perception systems. The Intersection-Flow-5k dataset is available at https://github.com/AstronZh/Intersection-Flow-5K.
Prompt-driven image analysis converts a single natural-language instruction into multiple steps: locate, segment, edit, and describe. We present a practical case study of a unified pipeline that combines open-vocabulary detection, promptable segmentation, text-conditioned inpainting, and vision-language description into a single workflow. The system works end to end from a single prompt, retains intermediate artifacts for transparent debugging (such as detections, masks, overlays, edited images, and before and after composites), and provides the same functionality through an interactive UI and a scriptable CLI for consistent, repeatable runs. We highlight integration choices that reduce brittleness, including threshold adjustments, mask inspection with light morphology, and resource-aware defaults. In a small, single-word prompt segment, detection and segmentation produced usable masks in over 90% of cases with an accuracy above 85% based on our criteria. On a high-end GPU, inpainting makes up 60 to 75% of total runtime under typical guidance and sampling settings, which highlights the need for careful tuning. The study offers implementation-guided advice on thresholds, mask tightness, and diffusion parameters, and details version pinning, artifact logging, and seed control to support replay. Our contribution is a transparent, reliable pattern for assembling modern vision and multimodal models behind a single prompt, with clear guardrails and operational practices that improve reliability in object replacement, scene augmentation, and removal.
Current Ethereum fraud detection methods rely on context-independent, numerical transaction sequences, failing to capture semantic of account transactions. Furthermore, the pervasive homogeneity in Ethereum transaction records renders it challenging to learn discriminative account embeddings. Moreover, current self-supervised graph learning methods primarily learn node representations through graph reconstruction, resulting in suboptimal performance for node-level tasks like fraud account detection, while these methods also encounter scalability challenges. To tackle these challenges, we propose LMAE4Eth, a multi-view learning framework that fuses transaction semantics, masked graph embedding, and expert knowledge. We first propose a transaction-token contrastive language model (TxCLM) that transforms context-independent numerical transaction records into logically cohesive linguistic representations. To clearly characterize the semantic differences between accounts, we also use a token-aware contrastive learning pre-training objective together with the masked transaction model pre-training objective, learns high-expressive account representations. We then propose a masked account graph autoencoder (MAGAE) using generative self-supervised learning, which achieves superior node-level account detection by focusing on reconstructing account node features. To enable MAGAE to scale for large-scale training, we propose to integrate layer-neighbor sampling into the graph, which reduces the number of sampled vertices by several times without compromising training quality. Finally, using a cross-attention fusion network, we unify the embeddings of TxCLM and MAGAE to leverage the benefits of both. We evaluate our method against 21 baseline approaches on three datasets. Experimental results show that our method outperforms the best baseline by over 10% in F1-score on two of the datasets.
\textbf{Background:} Machine learning models trained on electronic health records (EHRs) often degrade across healthcare systems due to distributional shift. A fundamental but underexplored factor is diagnostic signal decay: variability in diagnostic quality and consistency across institutions, which affects the reliability of codes used for training and prediction. \textbf{Objective:} To develop a Signal Fidelity Index (SFI) quantifying diagnostic data quality at the patient level in dementia, and to test SFI-aware calibration for improving model performance across heterogeneous datasets without outcome labels. \textbf{Methods:} We built a simulation framework generating 2,500 synthetic datasets, each with 1,000 patients and realistic demographics, encounters, and coding patterns based on dementia risk factors. The SFI was derived from six interpretable components: diagnostic specificity, temporal consistency, entropy, contextual concordance, medication alignment, and trajectory stability. SFI-aware calibration applied a multiplicative adjustment, optimized across 50 simulation batches. \textbf{Results:} At the optimal parameter ($\alpha$ = 2.0), SFI-aware calibration significantly improved all metrics (p $<$ 0.001). Gains ranged from 10.3\% for Balanced Accuracy to 32.5\% for Recall, with notable increases in Precision (31.9\%) and F1-score (26.1\%). Performance approached reference standards, with F1-score and Recall within 1\% and Balanced Accuracy and Detection Rate improved by 52.3\% and 41.1\%, respectively. \textbf{Conclusions:} Diagnostic signal decay is a tractable barrier to model generalization. SFI-aware calibration provides a practical, label-free strategy to enhance prediction across healthcare contexts, particularly for large-scale administrative datasets lacking outcome labels.
As local AI grows in popularity, there is a critical gap between the benchmark performance of object detectors and their practical viability on consumer-grade hardware. While models like YOLOv10s promise real-time speeds, these metrics are typically achieved on high-power, desktop-class GPUs. This paper reveals that on resource-constrained systems, such as laptops with RTX 4060 GPUs, performance is not compute-bound but is instead dominated by system-level bottlenecks, as illustrated by a simple bottleneck test. To overcome this hardware-level constraint, we introduce a Two-Pass Adaptive Inference algorithm, a model-independent approach that requires no architectural changes. This study mainly focuses on adaptive inference strategies and undertakes a comparative analysis of architectural early-exit and resolution-adaptive routing, highlighting their respective trade-offs within a unified evaluation framework. The system uses a fast, low-resolution pass and only escalates to a high-resolution model pass when detection confidence is low. On a 5000-image COCO dataset, our method achieves a 1.85x speedup over a PyTorch Early-Exit baseline, with a modest mAP loss of 5.51%. This work provides a practical and reproducible blueprint for deploying high-performance, real-time AI on consumer-grade devices by shifting the focus from pure model optimization to hardware-aware inference strategies that maximize throughput.
We introduce FakeParts, a new class of deepfakes characterized by subtle, localized manipulations to specific spatial regions or temporal segments of otherwise authentic videos. Unlike fully synthetic content, these partial manipulations, ranging from altered facial expressions to object substitutions and background modifications, blend seamlessly with real elements, making them particularly deceptive and difficult to detect. To address the critical gap in detection capabilities, we present FakePartsBench, the first large-scale benchmark dataset specifically designed to capture the full spectrum of partial deepfakes. Comprising over 25K videos with pixel-level and frame-level manipulation annotations, our dataset enables comprehensive evaluation of detection methods. Our user studies demonstrate that FakeParts reduces human detection accuracy by over 30% compared to traditional deepfakes, with similar performance degradation observed in state-of-the-art detection models. This work identifies an urgent vulnerability in current deepfake detection approaches and provides the necessary resources to develop more robust methods for partial video manipulations.