Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
In recent years, the application of Large Language Models (LLMs) to time series forecasting (TSF) has garnered significant attention among researchers. This study presents a new frame of LLMs named CGF-LLM using GPT-2 combined with fuzzy time series (FTS) and causal graph to predict multivariate time series, marking the first such architecture in the literature. The key objective is to convert numerical time series into interpretable forms through the parallel application of fuzzification and causal analysis, enabling both semantic understanding and structural insight as input for the pretrained GPT-2 model. The resulting textual representation offers a more interpretable view of the complex dynamics underlying the original time series. The reported results confirm the effectiveness of our proposed LLM-based time series forecasting model, as demonstrated across four different multivariate time series datasets. This initiative paves promising future directions in the domain of TSF using LLMs based on FTS.




The Deep Space Network (DSN) is NASA's largest network of antenna facilities that generate a large volume of multivariate time-series data. These facilities contain DSN antennas and transmitters that undergo degradation over long periods of time, which may cause costly disruptions to the data flow and threaten the earth-connection of dozens of spacecraft that rely on the Deep Space Network for their lifeline. The purpose of this study was to experiment with different methods that would be able to assist JPL engineers with directly pinpointing anomalies and equipment degradation through collected data, and continue conducting maintenance and operations of the DSN for future space missions around our universe. As such, we have researched various machine learning techniques that can fully reconstruct data through predictive analysis, and determine anomalous data entries within real-time datasets through statistical computations and thresholds. On top of the fully trained and tested machine learning models, we have also integrated the use of a reinforcement learning subsystem that classifies identified anomalies based on severity level and a Large Language Model that labels an explanation for each anomalous data entry, all of which can be improved and fine-tuned over time through human feedback/input. Specifically, for the DSN transmitters, we have also implemented a full data pipeline system that connects the data extraction, parsing, and processing workflow all together as there was no coherent program or script for performing these tasks before. Using this data pipeline system, we were able to then also connect the models trained from DSN antenna data, completing the data workflow for DSN anomaly detection. This was all wrapped around and further connected by an agentic AI system, where complex reasoning was utilized to determine the classifications and predictions of anomalous data.




Humor is a broad and complex form of communication that remains challenging for machines. Despite its broadness, most existing research on computational humor traditionally focused on modeling a specific type of humor. In this work, we wish to understand whether competence on one or more specific humor tasks confers any ability to transfer to novel, unseen types; in other words, is this fragmentation inevitable? This question is especially timely as new humor types continuously emerge in online and social media contexts (e.g., memes, anti-humor, AI fails). If Large Language Models (LLMs) are to keep up with this evolving landscape, they must be able to generalize across humor types by capturing deeper, transferable mechanisms. To investigate this, we conduct a series of transfer learning experiments across four datasets, representing different humor tasks. We train LLMs under varied diversity settings (1-3 datasets in training, testing on a novel task). Experiments reveal that models are capable of some transfer, and can reach up to 75% accuracy on unseen datasets; training on diverse sources improves transferability (1.88-4.05%) with minimal-to-no drop in in-domain performance. Further analysis suggests relations between humor types, with Dad Jokes surprisingly emerging as the best enabler of transfer (but is difficult to transfer to). We release data and code.
Fault diagnosis in Cyber-Physical Systems (CPSs) is essential for ensuring system dependability and operational efficiency by accurately detecting anomalies and identifying their root causes. However, the manual modeling of faulty behaviors often demands extensive domain expertise and produces models that are complex, error-prone, and difficult to interpret. To address this challenge, we present a novel unsupervised fault diagnosis methodology that integrates collective anomaly detection in multivariate time series, process mining, and stochastic simulation. Initially, collective anomalies are detected from low-level sensor data using multivariate time-series analysis. These anomalies are then transformed into structured event logs, enabling the discovery of interpretable process models through process mining. By incorporating timing distributions into the extracted Petri nets, the approach supports stochastic simulation of faulty behaviors, thereby enhancing root cause analysis and behavioral understanding. The methodology is validated using the Robotic Arm Dataset (RoAD), a widely recognized benchmark in smart manufacturing. Experimental results demonstrate its effectiveness in modeling, simulating, and classifying faulty behaviors in CPSs. This enables the creation of comprehensive fault dictionaries that support predictive maintenance and the development of digital twins for industrial environments.




Satellite image time-series analysis demands fine-grained spatial-temporal reasoning, which remains a challenge for existing multimodal large language models (MLLMs). In this work, we study the capabilities of MLLMs on a novel task that jointly targets temporal change understanding and future scene generation, aiming to assess their potential for modeling complex multimodal dynamics over time. We propose TAMMs, a Temporal-Aware Multimodal Model for satellite image change understanding and forecasting, which enhances frozen MLLMs with lightweight temporal modules for structured sequence encoding and contextual prompting. To guide future image generation, TAMMs introduces a Semantic-Fused Control Injection (SFCI) mechanism that adaptively combines high-level semantic reasoning and structural priors within an enhanced ControlNet. This dual-path conditioning enables temporally consistent and semantically grounded image synthesis. Experiments demonstrate that TAMMs outperforms strong MLLM baselines in both temporal change understanding and future image forecasting tasks, highlighting how carefully designed temporal reasoning and semantic fusion can unlock the full potential of MLLMs for spatio-temporal understanding.
Forecasting stock and cryptocurrency prices is challenging due to high volatility and non-stationarity, influenced by factors like economic changes and market sentiment. Previous research shows that Echo State Networks (ESNs) can effectively model short-term stock market movements, capturing nonlinear patterns in dynamic data. To the best of our knowledge, this work is among the first to explore ESNs for cryptocurrency forecasting, especially during extreme volatility. We also conduct chaos analysis through the Lyapunov exponent in chaotic periods and show that our approach outperforms existing machine learning methods by a significant margin. Our findings are consistent with the Lyapunov exponent analysis, showing that ESNs are robust during chaotic periods and excel under high chaos compared to Boosting and Na\"ive methods.




Detecting, analyzing, and predicting power outages is crucial for grid risk assessment and disaster mitigation. Numerous outages occur each year, exacerbated by extreme weather events such as hurricanes. Existing outage data are typically reported at the county level, limiting their spatial resolution and making it difficult to capture localized patterns. However, it offers excellent temporal granularity. In contrast, nighttime light satellite image data provides significantly higher spatial resolution and enables a more comprehensive spatial depiction of outages, enhancing the accuracy of assessing the geographic extent and severity of power loss after disaster events. However, these satellite data are only available on a daily basis. Integrating spatiotemporal visual and time-series data sources into a unified knowledge representation can substantially improve power outage detection, analysis, and predictive reasoning. In this paper, we propose GeoOutageKG, a multimodal knowledge graph that integrates diverse data sources, including nighttime light satellite image data, high-resolution spatiotemporal power outage maps, and county-level timeseries outage reports in the U.S. We describe our method for constructing GeoOutageKG by aligning source data with a developed ontology, GeoOutageOnto. Currently, GeoOutageKG includes over 10.6 million individual outage records spanning from 2014 to 2024, 300,000 NTL images spanning from 2012 to 2024, and 15,000 outage maps. GeoOutageKG is a novel, modular and reusable semantic resource that enables robust multimodal data integration. We demonstrate its use through multiresolution analysis of geospatiotemporal power outages.
Recent advances in Large Language Models (LLMs) have demonstrated new possibilities for accurate and efficient time series analysis, but prior work often required heavy fine-tuning and/or ignored inter-series correlations. In this work, we explore simple and flexible prompt-based strategies that enable LLMs to perform time series forecasting without extensive retraining or the use of a complex external architecture. Through the exploration of specialized prompting methods that leverage time series decomposition, patch-based tokenization, and similarity-based neighbor augmentation, we find that it is possible to enhance LLM forecasting quality while maintaining simplicity and requiring minimal preprocessing of data. To this end, we propose our own method, PatchInstruct, which enables LLMs to make precise and effective predictions.




Beta regression is commonly employed when the outcome variable is a proportion. Since its conception, the approach has been widely used in applications spanning various scientific fields. A series of extensions have been proposed over time, several of which address variable selection and penalized estimation, e.g., with an $\ell_1$-penalty (LASSO). However, a theoretical analysis of this popular approach in the context of Beta regression with high-dimensional predictors is lacking. In this paper, we aim to close this gap. A particular challenge arises from the non-convexity of the associated negative log-likelihood, which we address by resorting to a framework for analyzing stationary points in a neighborhood of the target parameter. Leveraging this framework, we derive a non-asymptotic bound on the $\ell_1$-error of such stationary points. In addition, we propose a debiasing approach to construct confidence intervals for the regression parameters. A proximal gradient algorithm is devised for optimizing the resulting penalized negative log-likelihood function. Our theoretical analysis is corroborated via simulation studies, and a real data example concerning the prediction of county-level proportions of incarceration is presented to showcase the practical utility of our methodology.
Marine chlorophyll concentration is an important indicator of ecosystem health and carbon cycle strength, and its accurate prediction is crucial for red tide warning and ecological response. In this paper, we propose a LSTM-RF hybrid model that combines the advantages of LSTM and RF, which solves the deficiencies of a single model in time-series modelling and nonlinear feature portrayal. Trained with multi-source ocean data(temperature, salinity, dissolved oxygen, etc.), the experimental results show that the LSTM-RF model has an R^2 of 0.5386, an MSE of 0.005806, and an MAE of 0.057147 on the test set, which is significantly better than using LSTM (R^2 = 0.0208) and RF (R^2 =0.4934) alone , respectively. The standardised treatment and sliding window approach improved the prediction accuracy of the model and provided an innovative solution for high-frequency prediction of marine ecological variables.