Abstract:This paper introduces an active learning (AL) framework for anomalous sound detection (ASD) in machine condition monitoring system. Typically, ASD models are trained solely on normal samples due to the scarcity of anomalous data, leading to decreased accuracy for unseen samples during inference. AL is a promising solution to solve this problem by enabling the model to learn new concepts more effectively with fewer labeled examples, thus reducing manual annotation efforts. However, its effectiveness in ASD remains unexplored. To minimize update costs and time, our proposed method focuses on updating the scoring backend of ASD system without retraining the neural network model. Experimental results on the DCASE 2023 Challenge Task 2 dataset confirm that our AL framework significantly improves ASD performance even with low labeling budgets. Moreover, our proposed sampling strategy outperforms other baselines in terms of the partial area under the receiver operating characteristic score.
Abstract:We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2024 Challenge Task 2: First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring. Continuing from last year's DCASE 2023 Challenge Task 2, we organize the task as a first-shot problem under domain generalization required settings. The main goal of the first-shot problem is to enable rapid deployment of ASD systems for new kinds of machines without the need for machine-specific hyperparameter tunings. This problem setting was realized by (1) giving only one section for each machine type and (2) having completely different machine types for the development and evaluation datasets. For the DCASE 2024 Challenge Task 2, data of completely new machine types were newly collected and provided as the evaluation dataset. In addition, attribute information such as the machine operation conditions were concealed for several machine types to mimic situations where such information are unavailable. We will add challenge results and analysis of the submissions after the challenge submission deadline.
Abstract:To develop a machine sound monitoring system, a method for detecting anomalous sound is proposed. In this paper, we explore a method for multiple clients to collaboratively learn an anomalous sound detection model while keeping their raw data private from each other. In the context of industrial machine anomalous sound detection, each client possesses data from different machines or different operational states, making it challenging to learn through federated learning or split learning. In our proposed method, each client calculates embeddings using a common pre-trained model developed for sound data classification, and these calculated embeddings are aggregated on the server to perform anomalous sound detection through outlier exposure. Experiments showed that our proposed method improves the AUC of anomalous sound detection by an average of 6.8%.
Abstract:One of the challenges in deploying a machine learning model is that the model's performance degrades as the operating environment changes. To maintain the performance, streaming active learning is used, in which the model is retrained by adding a newly annotated sample to the training dataset if the prediction of the sample is not certain enough. Although many streaming active learning methods have been proposed for classification, few efforts have been made for regression problems, which are often handled in the industrial field. In this paper, we propose to use the regression-via-classification framework for streaming active learning for regression. Regression-via-classification transforms regression problems into classification problems so that streaming active learning methods proposed for classification problems can be applied directly to regression problems. Experimental validation on four real data sets shows that the proposed method can perform regression with higher accuracy at the same annotation cost.
Abstract:In conventional studies on environmental sound separation and synthesis using captions, datasets consisting of multiple-source sounds with their captions were used for model training. However, when we collect the captions for multiple-source sound, it is not easy to collect detailed captions for each sound source, such as the number of sound occurrences and timbre. Therefore, it is difficult to extract only the single-source target sound by the model-training method using a conventional captioned sound dataset. In this work, we constructed a dataset with captions for a single-source sound named CAPTDURE, which can be used in various tasks such as environmental sound separation and synthesis. Our dataset consists of 1,044 sounds and 4,902 captions. We evaluated the performance of environmental sound extraction using our dataset. The experimental results show that the captions for single-source sounds are effective in extracting only the single-source target sound from the mixture sound.
Abstract:This paper proposes an unsupervised anomalous sound detection method using sound separation. In factory environments, background noise and non-objective sounds obscure desired machine sounds, making it challenging to detect anomalous sounds. Therefore, using sounds not mixed with background noise or non-purpose sounds in the detection system is desirable. We compared two versions of our proposed method, one using sound separation as a pre-processing step and the other using separation-based outlier exposure that uses the error between two separated sounds. Based on the assumption that differences in separation performance between normal and anomalous sounds affect detection results, a sound separation model specific to a particular product type was used in both versions. Experimental results indicate that the proposed method improved anomalous sound detection performance for all Machine IDs, achieving a maximum improvement of 39%.
Abstract:We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2023 Challenge Task 2: "First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring". The main goal is to enable rapid deployment of ASD systems for new kinds of machines using only a few normal samples, without the need for hyperparameter tuning. In the past ASD tasks, developed methods tuned hyperparameters for each machine type, as the development and evaluation datasets had the same machine types. However, collecting normal and anomalous data as the development dataset can be infeasible in practice. In 2023 Task 2, we focus on solving first-shot problem, which is the challenge of training a model on a few machines of a completely novel machine type. Specifically, (i) each machine type has only one section, and (ii) machine types in the development and evaluation datasets are completely different. We will add challenge results and analysis of the submissions after the challenge submission deadline.
Abstract:Semi-supervised anomaly detection~(SSAD) is a task where normal data and a limited number of anomalous data are available for training. In practical situations, SSAD methods suffer adapting to domain shifts, since anomalous data are unlikely to be available for the target domain in the training phase. To solve this problem, we propose a domain adaptation method for SSAD where no anomalous data are available for the target domain. First, we introduce a domain-adversarial network to a variational auto-encoder-based SSAD model to obtain domain-invariant latent variables. Since the decoder cannot reconstruct the original data solely from domain-invariant latent variables, we conditioned the decoder on the domain label. To compensate for the missing anomalous data of the target domain, we introduce an importance sampling-based weighted loss function that approximates the ideal loss function. Experimental results indicate that the proposed method helps adapt SSAD models to the target domain when no anomalous data are available for the target domain.
Abstract:In this paper, we present an incremental domain adaptation technique to prevent catastrophic forgetting for an end-to-end automatic speech recognition (ASR) model. Conventional approaches require extra parameters of the same size as the model for optimization, and it is difficult to apply these approaches to end-to-end ASR models because they have a huge amount of parameters. To solve this problem, we first investigate which parts of end-to-end ASR models contribute to high accuracy in the target domain while preventing catastrophic forgetting. We conduct experiments on incremental domain adaptation from the LibriSpeech dataset to the AMI meeting corpus with two popular end-to-end ASR models and found that adapting only the linear layers of their encoders can prevent catastrophic forgetting. Then, on the basis of this finding, we develop an element-wise parameter selection focused on specific layers to further reduce the number of fine-tuning parameters. Experimental results show that our approach consistently prevents catastrophic forgetting compared to parameter selection from the whole model.
Abstract:We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 Challenge Task 2: "Unsupervised anomalous sound detection (ASD) for machine condition monitoring applying domain generalization techniques". Domain shifts are a critical problem for the application of ASD systems. Because domain shifts can change the acoustic characteristics of data, a model trained in a source domain performs poorly for a target domain. In DCASE 2021 Challenge Task 2, we organized an ASD task for handling domain shifts. In this task, it was assumed that the occurrences of domain shifts are known. However, in practice, the domain of each sample may not be given, and the domain shifts can occur implicitly. In 2022 Task 2, we focus on domain generalization techniques that detects anomalies regardless of the domain shifts. Specifically, the domain of each sample is not given in the test data and only one threshold is allowed for all domains. We will add challenge results and analysis of the submissions after the challenge submission deadline.