The advancements in Multimodal Large Language Models (MLLMs) have enabled various multimodal tasks to be addressed under a zero-shot paradigm. This paradigm sidesteps the cost of model fine-tuning, emerging as a dominant trend in practical application. Nevertheless, Multimodal Sentiment Analysis (MSA), a pivotal challenge in the quest for general artificial intelligence, fails to accommodate this convenience. The zero-shot paradigm exhibits undesirable performance on MSA, casting doubt on whether MLLMs can perceive sentiments as competent as supervised models. By extending the zero-shot paradigm to In-Context Learning (ICL) and conducting an in-depth study on configuring demonstrations, we validate that MLLMs indeed possess such capability. Specifically, three key factors that cover demonstrations' retrieval, presentation, and distribution are comprehensively investigated and optimized. A sentimental predictive bias inherent in MLLMs is also discovered and later effectively counteracted. By complementing each other, the devised strategies for three factors result in average accuracy improvements of 15.9% on six MSA datasets against the zero-shot paradigm and 11.2% against the random ICL baseline.
This study introduces an interpretable machine learning (ML) framework to extract macroeconomic alpha from global news sentiment. We process the Global Database of Events, Language, and Tone (GDELT) Project's worldwide news feed using FinBERT -- a Bidirectional Encoder Representations from Transformers (BERT) based model pretrained on finance-specific language -- to construct daily sentiment indices incorporating mean tone, dispersion, and event impact. These indices drive an XGBoost classifier, benchmarked against logistic regression, to predict next-day returns for EUR/USD, USD/JPY, and 10-year U.S. Treasury futures (ZN). Rigorous out-of-sample (OOS) backtesting (5-fold expanding-window cross-validation, OOS period: c. 2017-April 2025) demonstrates exceptional, cost-adjusted performance for the XGBoost strategy: Sharpe ratios achieve 5.87 (EUR/USD), 4.65 (USD/JPY), and 4.65 (Treasuries), with respective compound annual growth rates (CAGRs) exceeding 50% in Foreign Exchange (FX) and 22% in bonds. Shapley Additive Explanations (SHAP) affirm that sentiment dispersion and article impact are key predictive features. Our findings establish that integrating domain-specific Natural Language Processing (NLP) with interpretable ML offers a potent and explainable source of macro alpha.




The increasing complexity of large-scale language models has amplified concerns regarding their interpretability and reusability. While traditional embedding models like Word2Vec and GloVe offer scalability, they lack transparency and often behave as black boxes. Conversely, interpretable models such as the Tsetlin Machine (TM) have shown promise in constructing explainable learning systems, though they previously faced limitations in scalability and reusability. In this paper, we introduce Omni Tsetlin Machine AutoEncoder (Omni TM-AE), a novel embedding model that fully exploits the information contained in the TM's state matrix, including literals previously excluded from clause formation. This method enables the construction of reusable, interpretable embeddings through a single training phase. Extensive experiments across semantic similarity, sentiment classification, and document clustering tasks show that Omni TM-AE performs competitively with and often surpasses mainstream embedding models. These results demonstrate that it is possible to balance performance, scalability, and interpretability in modern Natural Language Processing (NLP) systems without resorting to opaque architectures.
Sarcasm is a challenge to sentiment analysis because of the incongruity between stated and implied sentiment. The challenge is exacerbated when the implication may be relevant to a specific country or geographical region. Pragmatic metacognitive prompting (PMP) is a cognition-inspired technique that has been used for pragmatic reasoning. In this paper, we harness PMP for explainable sarcasm detection for Australian and Indian English, alongside a benchmark dataset for standard English. We manually add sarcasm explanations to an existing sarcasm-labeled dataset for Australian and Indian English called BESSTIE, and compare the performance for explainable sarcasm detection for them with FLUTE, a standard English dataset containing sarcasm explanations. Our approach utilising PMP when evaluated on two open-weight LLMs (GEMMA and LLAMA) achieves statistically significant performance improvement across all tasks and datasets when compared with four alternative prompting strategies. We also find that alternative techniques such as agentic prompting mitigate context-related failures by enabling external knowledge retrieval. The focused contribution of our work is utilising PMP in generating sarcasm explanations for varieties of English.
Detoxifying offensive language while preserving the speaker's original intent is a challenging yet critical goal for improving the quality of online interactions. Although large language models (LLMs) show promise in rewriting toxic content, they often default to overly polite rewrites, distorting the emotional tone and communicative intent. This problem is especially acute in Chinese, where toxicity often arises implicitly through emojis, homophones, or discourse context. We present ToxiRewriteCN, the first Chinese detoxification dataset explicitly designed to preserve sentiment polarity. The dataset comprises 1,556 carefully annotated triplets, each containing a toxic sentence, a sentiment-aligned non-toxic rewrite, and labeled toxic spans. It covers five real-world scenarios: standard expressions, emoji-induced and homophonic toxicity, as well as single-turn and multi-turn dialogues. We evaluate 17 LLMs, including commercial and open-source models with variant architectures, across four dimensions: detoxification accuracy, fluency, content preservation, and sentiment polarity. Results show that while commercial and MoE models perform best overall, all models struggle to balance safety with emotional fidelity in more subtle or context-heavy settings such as emoji, homophone, and dialogue-based inputs. We release ToxiRewriteCN to support future research on controllable, sentiment-aware detoxification for Chinese.
Effective cross-lingual transfer remains a critical challenge in scaling the benefits of large language models from high-resource to low-resource languages. Towards this goal, prior studies have explored many approaches to combine task knowledge from task-specific data in a (high-resource) source language and language knowledge from unlabeled text in a (low-resource) target language. One notable approach proposed composable sparse fine-tuning (SFT) for cross-lingual transfer that learns task-specific and language-specific sparse masks to select a subset of the pretrained model's parameters that are further fine-tuned. These sparse fine-tuned vectors (SFTs) are subsequently composed with the pretrained model to facilitate zero-shot cross-lingual transfer to a task in a target language, using only task-specific data from a source language. These sparse masks for SFTs were identified using a simple magnitude-based pruning. In our work, we introduce DeFT-X, a novel composable SFT approach that denoises the weight matrices of a pretrained model before magnitude pruning using singular value decomposition, thus yielding more robust SFTs. We evaluate DeFT-X on a diverse set of extremely low-resource languages for sentiment classification (NusaX) and natural language inference (AmericasNLI) and demonstrate that it performs at par or outperforms SFT and other prominent cross-lingual transfer baselines.
Peer review is vital in academia for evaluating research quality. Top AI conferences use reviewer confidence scores to ensure review reliability, but existing studies lack fine-grained analysis of text-score consistency, potentially missing key details. This work assesses consistency at word, sentence, and aspect levels using deep learning and NLP conference review data. We employ deep learning to detect hedge sentences and aspects, then analyze report length, hedge word/sentence frequency, aspect mentions, and sentiment to evaluate text-score alignment. Correlation, significance, and regression tests examine confidence scores' impact on paper outcomes. Results show high text-score consistency across all levels, with regression revealing higher confidence scores correlate with paper rejection, validating expert assessments and peer review fairness.
We present BiasLab, a dataset of 300 political news articles annotated for perceived ideological bias. These articles were selected from a curated 900-document pool covering diverse political events and source biases. Each article is labeled by crowdworkers along two independent scales, assessing sentiment toward the Democratic and Republican parties, and enriched with rationale indicators. The annotation pipeline incorporates targeted worker qualification and was refined through pilot-phase analysis. We quantify inter-annotator agreement, analyze misalignment with source-level outlet bias, and organize the resulting labels into interpretable subsets. Additionally, we simulate annotation using schema-constrained GPT-4o, enabling direct comparison to human labels and revealing mirrored asymmetries, especially in misclassifying subtly right-leaning content. We define two modeling tasks: perception drift prediction and rationale type classification, and report baseline performance to illustrate the challenge of explainable bias detection. BiasLab's rich rationale annotations provide actionable interpretations that facilitate explainable modeling of political bias, supporting the development of transparent, socially aware NLP systems. We release the dataset, annotation schema, and modeling code to encourage research on human-in-the-loop interpretability and the evaluation of explanation effectiveness in real-world settings.
Pretrained generative models have opened new frontiers in brain decoding by enabling the synthesis of realistic texts and images from non-invasive brain recordings. However, the reliability of such outputs remains questionable--whether they truly reflect semantic activation in the brain, or are merely hallucinated by the powerful generative models. In this paper, we focus on EEG-to-text decoding and address its hallucination issue through the lens of posterior collapse. Acknowledging the underlying mismatch in information capacity between EEG and text, we reframe the decoding task as semantic summarization of core meanings rather than previously verbatim reconstruction of stimulus texts. To this end, we propose the Generative Language Inspection Model (GLIM), which emphasizes learning informative and interpretable EEG representations to improve semantic grounding under heterogeneous and small-scale data conditions. Experiments on the public ZuCo dataset demonstrate that GLIM consistently generates fluent, EEG-grounded sentences without teacher forcing. Moreover, it supports more robust evaluation beyond text similarity, through EEG-text retrieval and zero-shot semantic classification across sentiment categories, relation types, and corpus topics. Together, our architecture and evaluation protocols lay the foundation for reliable and scalable benchmarking in generative brain decoding.
NeoN, a tool for detecting and analyzing Polish neologisms. Unlike traditional dictionary-based methods requiring extensive manual review, NeoN combines reference corpora, Polish-specific linguistic filters, an LLM-driven precision-boosting filter, and daily RSS monitoring in a multi-layered pipeline. The system uses context-aware lemmatization, frequency analysis, and orthographic normalization to extract candidate neologisms while consolidating inflectional variants. Researchers can verify candidates through an intuitive interface with visualizations and filtering controls. An integrated LLM module automatically generates definitions and categorizes neologisms by domain and sentiment. Evaluations show NeoN maintains high accuracy while significantly reducing manual effort, providing an accessible solution for tracking lexical innovation in Polish.