



Large Language Models (LLMs) exhibit significant performance variations depending on the linguistic and cultural context in which they are applied. This disparity signals the necessity of mature evaluation frameworks that can assess their capabilities in specific regional settings. In the case of Portuguese, existing evaluations remain limited, often relying on translated datasets that may not fully capture linguistic nuances or cultural references. Meanwhile, native Portuguese-language datasets predominantly focus on structured national exams or sentiment analysis of social media interactions, leaving gaps in evaluating broader linguistic understanding. To address this limitation, we introduce BRoverbs, a dataset specifically designed to assess LLM performance through Brazilian proverbs. Proverbs serve as a rich linguistic resource, encapsulating cultural wisdom, figurative expressions, and complex syntactic structures that challenge the model comprehension of regional expressions. BRoverbs aims to provide a new evaluation tool for Portuguese-language LLMs, contributing to advancing regionally informed benchmarking. The benchmark is available at https://huggingface.co/datasets/Tropic-AI/BRoverbs.
Aspect-based sentiment analysis (ABSA) aims to identify aspect terms and determine their sentiment polarity. While dependency trees combined with contextual semantics effectively identify aspect sentiment, existing methods relying on syntax trees and aspect-aware attention struggle to model complex semantic relationships. Their dependence on linear dot-product features fails to capture nonlinear associations, allowing noisy similarity from irrelevant words to obscure key opinion terms. Motivated by Differentiable Optimal Matching, we propose the Optimal Transport Enhanced Syntactic-Semantic Graph Network (OTESGN), which introduces a Syntactic-Semantic Collaborative Attention. It comprises a Syntactic Graph-Aware Attention for mining latent syntactic dependencies and modeling global syntactic topology, as well as a Semantic Optimal Transport Attention designed to uncover fine-grained semantic alignments amidst textual noise, thereby accurately capturing sentiment signals obscured by irrelevant tokens. A Adaptive Attention Fusion module integrates these heterogeneous features, and contrastive regularization further improves robustness. Experiments demonstrate that OTESGN achieves state-of-the-art results, outperforming previous best models by +1.01% F1 on Twitter and +1.30% F1 on Laptop14 benchmarks. Ablative studies and visual analyses corroborate its efficacy in precise localization of opinion words and noise resistance.
Stigmatizing language results in healthcare inequities, yet there is no universally accepted or standardized lexicon defining which words, terms, or phrases constitute stigmatizing language in healthcare. We conducted a systematic search of the literature to identify existing stigmatizing language lexicons and then analyzed them comparatively to examine: 1) similarities and discrepancies between these lexicons, and 2) the distribution of positive, negative, or neutral terms based on an established sentiment dataset. Our search identified four lexicons. The analysis results revealed moderate semantic similarity among them, and that most stigmatizing terms are related to judgmental expressions by clinicians to describe perceived negative behaviors. Sentiment analysis showed a predominant proportion of negatively classified terms, though variations exist across lexicons. Our findings underscore the need for a standardized lexicon and highlight challenges in defining stigmatizing language in clinical texts.
As social robots get more deeply integrated intoour everyday lives, they will be expected to engage in meaningful conversations and exhibit socio-emotionally intelligent listening behaviors when interacting with people. Active listening and backchanneling could be one way to enhance robots' communicative capabilities and enhance their effectiveness in eliciting deeper self-disclosure, providing a sense of empathy,and forming positive rapport and relationships with people.Thus, we developed an LLM-powered social robot that can exhibit contextually appropriate sentiment-based backchannelingand active listening behaviors (active listening+backchanneling) and compared its efficacy in eliciting people's self-disclosurein comparison to robots that do not exhibit any of these listening behaviors (control) and a robot that only exhibitsbackchanneling behavior (backchanneling-only). Through ourexperimental study with sixty-five participants, we found theparticipants who conversed with the active listening robot per-ceived the interactions more positively, in which they exhibited the highest self-disclosures, and reported the strongest senseof being listened to. The results of our study suggest that the implementation of active listening behaviors in social robotshas the potential to improve human-robot communication andcould further contribute to the building of deeper human-robot relationships and rapport.
Sentiment classification in short text datasets faces significant challenges such as class imbalance, limited training samples, and the inherent subjectivity of sentiment labels -- issues that are further intensified by the limited context in short texts. These factors make it difficult to resolve ambiguity and exacerbate data sparsity, hindering effective learning. In this paper, we evaluate the effectiveness of small Transformer-based models (i.e., BERT and RoBERTa, with fewer than 1 billion parameters) for multi-label sentiment classification, with a particular focus on short-text settings. Specifically, we evaluated three key factors influencing model performance: (1) continued domain-specific pre-training, (2) data augmentation using automatically generated examples, specifically generative data augmentation, and (3) architectural variations of the classification head. Our experiment results show that data augmentation improves classification performance, while continued pre-training on augmented datasets can introduce noise rather than boost accuracy. Furthermore, we confirm that modifications to the classification head yield only marginal benefits. These findings provide practical guidance for optimizing BERT-based models in resource-constrained settings and refining strategies for sentiment classification in short-text datasets.
This study introduces KPoEM (Korean Poetry Emotion Mapping) , a novel dataset for computational emotion analysis in modern Korean poetry. Despite remarkable progress in text-based emotion classification using large language models, poetry-particularly Korean poetry-remains underexplored due to its figurative language and cultural specificity. We built a multi-label emotion dataset of 7,662 entries, including 7,007 line-level entries from 483 poems and 615 work-level entries, annotated with 44 fine-grained emotion categories from five influential Korean poets. A state-of-the-art Korean language model fine-tuned on this dataset significantly outperformed previous models, achieving 0.60 F1-micro compared to 0.34 from models trained on general corpora. The KPoEM model, trained through sequential fine-tuning-first on general corpora and then on the KPoEM dataset-demonstrates not only an enhanced ability to identify temporally and culturally specific emotional expressions, but also a strong capacity to preserve the core sentiments of modern Korean poetry. This study bridges computational methods and literary analysis, presenting new possibilities for the quantitative exploration of poetic emotions through structured data that faithfully retains the emotional and cultural nuances of Korean literature.
Understanding covert narratives and implicit messaging is essential for analyzing bias and sentiment. Traditional NLP methods struggle with detecting subtle phrasing and hidden agendas. This study tackles two key challenges: (1) multi-label classification of narratives and sub-narratives in news articles, and (2) generating concise, evidence-based explanations for dominant narratives. We fine-tune a BERT model with a recall-oriented approach for comprehensive narrative detection, refining predictions using a GPT-4o pipeline for consistency. For narrative explanation, we propose a ReACT (Reasoning + Acting) framework with semantic retrieval-based few-shot prompting, ensuring grounded and relevant justifications. To enhance factual accuracy and reduce hallucinations, we incorporate a structured taxonomy table as an auxiliary knowledge base. Our results show that integrating auxiliary knowledge in prompts improves classification accuracy and justification reliability, with applications in media analysis, education, and intelligence gathering.




Historic urban quarters play a vital role in preserving cultural heritage while serving as vibrant spaces for tourism and everyday life. Understanding how tourists perceive these environments is essential for sustainable, human-centered urban planning. This study proposes a multidimensional AI-powered framework for analyzing tourist perception in historic urban quarters using multimodal data from social media. Applied to twelve historic quarters in central Shanghai, the framework integrates focal point extraction, color theme analysis, and sentiment mining. Visual focus areas are identified from tourist-shared photos using a fine-tuned semantic segmentation model. To assess aesthetic preferences, dominant colors are extracted using a clustering method, and their spatial distribution across quarters is analyzed. Color themes are further compared between social media photos and real-world street views, revealing notable shifts. This divergence highlights potential gaps between visual expectations and the built environment, reflecting both stylistic preferences and perceptual bias. Tourist reviews are evaluated through a hybrid sentiment analysis approach combining a rule-based method and a multi-task BERT model. Satisfaction is assessed across four dimensions: tourist activities, built environment, service facilities, and business formats. The results reveal spatial variations in aesthetic appeal and emotional response. Rather than focusing on a single technical innovation, this framework offers an integrated, data-driven approach to decoding tourist perception and contributes to informed decision-making in tourism, heritage conservation, and the design of aesthetically engaging public spaces.
Transformer-based language models excel in NLP tasks, but fine-grained control remains challenging. This paper explores methods for manipulating transformer models through principled interventions at three levels: prompts, activations, and weights. We formalize controllable text generation as an optimization problem addressable via prompt engineering, parameter-efficient fine-tuning, model editing, and reinforcement learning. We introduce a unified framework encompassing prompt-level steering, activation interventions, and weight-space edits. We analyze robustness and safety implications, including adversarial attacks and alignment mitigations. Theoretically, we show minimal weight updates can achieve targeted behavior changes with limited side-effects. Empirically, we demonstrate >90% success in sentiment control and factual edits while preserving base performance, though generalization-specificity trade-offs exist. We discuss ethical dual-use risks and the need for rigorous evaluation. This work lays groundwork for designing controllable and robust language models.
Current conversational AI systems often provide generic, one-size-fits-all interactions that overlook individual user characteristics and lack adaptive dialogue management. To address this gap, we introduce \textbf{HumAIne-chatbot}, an AI-driven conversational agent that personalizes responses through a novel user profiling framework. The system is pre-trained on a diverse set of GPT-generated virtual personas to establish a broad prior over user types. During live interactions, an online reinforcement learning agent refines per-user models by combining implicit signals (e.g. typing speed, sentiment, engagement duration) with explicit feedback (e.g., likes and dislikes). This profile dynamically informs the chatbot dialogue policy, enabling real-time adaptation of both content and style. To evaluate the system, we performed controlled experiments with 50 synthetic personas in multiple conversation domains. The results showed consistent improvements in user satisfaction, personalization accuracy, and task achievement when personalization features were enabled. Statistical analysis confirmed significant differences between personalized and nonpersonalized conditions, with large effect sizes across key metrics. These findings highlight the effectiveness of AI-driven user profiling and provide a strong foundation for future real-world validation.