Abstract:NeoN, a tool for detecting and analyzing Polish neologisms. Unlike traditional dictionary-based methods requiring extensive manual review, NeoN combines reference corpora, Polish-specific linguistic filters, an LLM-driven precision-boosting filter, and daily RSS monitoring in a multi-layered pipeline. The system uses context-aware lemmatization, frequency analysis, and orthographic normalization to extract candidate neologisms while consolidating inflectional variants. Researchers can verify candidates through an intuitive interface with visualizations and filtering controls. An integrated LLM module automatically generates definitions and categorizes neologisms by domain and sentiment. Evaluations show NeoN maintains high accuracy while significantly reducing manual effort, providing an accessible solution for tracking lexical innovation in Polish.
Abstract:This paper investigates the problem of Graph Spectral Clustering with negative similarities, resulting from document embeddings different from the traditional Term Vector Space (like doc2vec, GloVe, etc.). Solutions for combinatorial Laplacians and normalized Laplacians are discussed. An experimental investigation shows the advantages and disadvantages of 6 different solutions proposed in the literature and in this research. The research demonstrates that GloVe embeddings frequently cause failures of normalized Laplacian based GSC due to negative similarities. Furthermore, application of methods curing similarity negativity leads to accuracy improvement for both combinatorial and normalized Laplacian based GSC. It also leads to applicability for GloVe embeddings of explanation methods developed originally bythe authors for Term Vector Space embeddings.
Abstract:Pattern-based methods of IS-A relation extraction rely heavily on so called Hearst patterns. These are ways of expressing instance enumerations of a class in natural language. While these lexico-syntactic patterns prove quite useful, they may not capture all taxonomical relations expressed in text. Therefore in this paper we describe a novel method of IS-A relation extraction from patterns, which uses morpho-syntactical annotations along with grammatical case of noun phrases that constitute entities participating in IS-A relation. We also describe a method for increasing the number of extracted relations that we call pseudo-subclass boosting which has potential application in any pattern-based relation extraction method. Experiments were conducted on a corpus of about 0.5 billion web documents in Polish language.