Bangla or Bengali is the national language of Bangladesh, people from different regions don't talk in proper Bangla. Every division of Bangladesh has its own local language like Sylheti, Chittagong etc. In recent years some papers were published on Bangla language like sentiment analysis, fake news detection and classifications, but a few of them were on Bangla languages. This research is for the local language and this particular paper is on Sylheti language. It presented a comprehensive system using Natural Language Processing or NLP techniques for translating Pure or Modern Bangla to locally spoken Sylheti Bangla language. Total 1200 data used for training 3 models LSTM, Bi-LSTM and Seq2Seq and LSTM scored the best in performance with 89.3% accuracy. The findings of this research may contribute to the growth of Bangla NLP researchers for future more advanced innovations.
Generative Artificial Intelligence (AI) systems currently contribute negatively to the production of digital waste, via the associated energy consumption and the related CO2 emissions. At this moment, a discussion is urgently needed on the replication of harmful consumer behavior, such as overconsumption, in the digital space. We outline our previous work on the climate implications of commercially available generative AI systems and the sentiment of generative AI users when confronted with AI-related climate research. We expand on this work via a discussion of digital overconsumption and waste, other related societal impacts, and a possible solution pathway
Large Language Models (LLMs) demonstrate increasing conversational fluency, yet instilling them with nuanced, human-like emotional expression remains a significant challenge. Current alignment techniques often address surface-level output or require extensive fine-tuning. This paper demonstrates that targeted activation engineering can steer LLaMA 3.1-8B to exhibit more human-like emotional nuances. We first employ attribution patching to identify causally influential components, to find a key intervention locus by observing activation patterns during diagnostic conversational tasks. We then derive emotional expression vectors from the difference in the activations generated by contrastive text pairs (positive vs. negative examples of target emotions). Applying these vectors to new conversational prompts significantly enhances emotional characteristics: steered responses show increased positive sentiment (e.g., joy, trust) and more frequent first-person pronoun usage, indicative of greater personal engagement. Our findings offer a precise and interpretable method for controlling specific emotional attributes in LLMs, contributing to developing more aligned and empathetic conversational AI.
As Large Language Models (LLMs) are increasingly being adopted for narrow tasks - such as medical question answering or sentiment analysis - and deployed in resource-constrained settings, a key question arises: how many parameters does a task actually need? In this work, we present LLM-Sieve, the first comprehensive framework for task-specific pruning of LLMs that achieves 20-75% parameter reduction with only 1-5% accuracy degradation across diverse domains. Unlike prior methods that apply uniform pruning or rely on low-rank approximations of weight matrices or inputs in isolation, LLM-Sieve (i) learns task-aware joint projections to better approximate output behavior, and (ii) employs a Genetic Algorithm to discover differentiated pruning levels for each matrix. LLM-Sieve is fully compatible with LoRA fine-tuning and quantization, and uniquely demonstrates strong generalization across datasets within the same task domain. Together, these results establish a practical and robust mechanism to generate smaller performant task-specific models.
Study of affect in speech requires suitable data, as emotional expression and perception vary across languages. Until now, no corpus has existed for natural expression of affect in spontaneous Finnish, existing data being acted or from a very specific communicative setting. This paper presents the first such corpus, created by annotating 12,000 utterances for emotional arousal and valence, sampled from three large-scale Finnish speech corpora. To ensure diverse affective expression, sample selection was conducted with an affect mining approach combining acoustic, cross-linguistic speech emotion, and text sentiment features. We compare this method to random sampling in terms of annotation diversity, and conduct post-hoc analyses to identify sampling choices that would have maximized the diversity. As an outcome, the work introduces a spontaneous Finnish affective speech corpus and informs sampling strategies for affective speech corpus creation in other languages or domains.
During sudden disaster events, accurately predicting public panic sentiment on social media is crucial for proactive governance and crisis management. Current efforts on this problem face three main challenges: lack of finely annotated data hinders emotion prediction studies, unmodeled risk perception causes prediction inaccuracies, and insufficient interpretability of panic formation mechanisms. We address these issues by proposing a Psychology-driven generative Agent framework (PsychoAgent) for explainable panic prediction based on emotion arousal theory. Specifically, we first construct a fine-grained open panic emotion dataset (namely COPE) via human-large language models (LLMs) collaboration to mitigate semantic bias. Then, we develop a framework integrating cross-domain heterogeneous data grounded in psychological mechanisms to model risk perception and cognitive differences in emotion generation. To enhance interpretability, we design an LLM-based role-playing agent that simulates individual psychological chains through dedicatedly designed prompts. Experimental results on our annotated dataset show that PsychoAgent improves panic emotion prediction performance by 12.6% to 21.7% compared to baseline models. Furthermore, the explainability and generalization of our approach is validated. Crucially, this represents a paradigm shift from opaque "data-driven fitting" to transparent "role-based simulation with mechanistic interpretation" for panic emotion prediction during emergencies. Our implementation is publicly available at: https://anonymous.4open.science/r/PsychoAgent-19DD.
As of 2025, Generative Artificial Intelligence (GenAI) has become a central tool for productivity across industries. Beyond text generation, GenAI now plays a critical role in coding, data analysis, and research workflows. As large language models (LLMs) continue to evolve, it is essential to assess the reliability and accuracy of their outputs, especially in specialized, high-stakes domains like finance. Most modern LLMs transform text into numerical vectors, which are used in operations such as cosine similarity searches to generate responses. However, this abstraction process can lead to misinterpretation of emotional tone, particularly in nuanced financial contexts. While LLMs generally excel at identifying sentiment in everyday language, these models often struggle with the nuanced, strategically ambiguous language found in earnings call transcripts. Financial disclosures frequently embed sentiment in hedged statements, forward-looking language, and industry-specific jargon, making it difficult even for human analysts to interpret consistently, let alone AI models. This paper presents findings from the Santa Clara Microsoft Practicum Project, led by Professor Charlie Goldenberg, which benchmarks the performance of Microsoft's Copilot, OpenAI's ChatGPT, Google's Gemini, and traditional machine learning models for sentiment analysis of financial text. Using Microsoft earnings call transcripts, the analysis assesses how well LLM-derived sentiment correlates with market sentiment and stock movements and evaluates the accuracy of model outputs. Prompt engineering techniques are also examined to improve sentiment analysis results. Visualizations of sentiment consistency are developed to evaluate alignment between tone and stock performance, with sentiment trends analyzed across Microsoft's lines of business to determine which segments exert the greatest influence.
In this paper, we combine two-step knowledge distillation, structured pruning, truncation, and vocabulary trimming for extremely compressing multilingual encoder-only language models for low-resource languages. Our novel approach systematically combines existing techniques and takes them to the extreme, reducing layer depth, feed-forward hidden size, and intermediate layer embedding size to create significantly smaller monolingual models while retaining essential language-specific knowledge. We achieve compression rates of up to 92% with only a marginal performance drop of 2-10% in four downstream tasks, including sentiment analysis, topic classification, named entity recognition, and part-of-speech tagging, across three low-resource languages. Notably, the performance degradation correlates with the amount of language-specific data in the teacher model, with larger datasets resulting in smaller performance losses. Additionally, we conduct extensive ablation studies to identify best practices for multilingual model compression using these techniques.
Large Language Models (LLMs) have rapidly become central to NLP, demonstrating their ability to adapt to various tasks through prompting techniques, including sentiment analysis. However, we still have a limited understanding of how these models capture sentiment-related information. This study probes the hidden layers of Llama models to pinpoint where sentiment features are most represented and to assess how this affects sentiment analysis. Using probe classifiers, we analyze sentiment encoding across layers and scales, identifying the layers and pooling methods that best capture sentiment signals. Our results show that sentiment information is most concentrated in mid-layers for binary polarity tasks, with detection accuracy increasing up to 14% over prompting techniques. Additionally, we find that in decoder-only models, the last token is not consistently the most informative for sentiment encoding. Finally, this approach enables sentiment tasks to be performed with memory requirements reduced by an average of 57%. These insights contribute to a broader understanding of sentiment in LLMs, suggesting layer-specific probing as an effective approach for sentiment tasks beyond prompting, with potential to enhance model utility and reduce memory requirements.
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but controlling their behavior reliably remains challenging, especially in open-ended generation settings. This paper introduces a novel supervised steering approach that operates in sparse, interpretable representation spaces. We employ sparse autoencoders (SAEs)to obtain sparse latent representations that aim to disentangle semantic attributes from model activations. Then we train linear classifiers to identify a small subspace of task-relevant dimensions in latent representations. Finally, we learn supervised steering vectors constrained to this subspace, optimized to align with target behaviors. Experiments across sentiment, truthfulness, and politics polarity steering tasks with multiple LLMs demonstrate that our supervised steering vectors achieve higher success rates with minimal degradation in generation quality compared to existing methods. Further analysis reveals that a notably small subspace is sufficient for effective steering, enabling more targeted and interpretable interventions.