Subjective language understanding refers to a broad set of natural language processing tasks where the goal is to interpret or generate content that conveys personal feelings, opinions, or figurative meanings rather than objective facts. With the advent of large language models (LLMs) such as ChatGPT, LLaMA, and others, there has been a paradigm shift in how we approach these inherently nuanced tasks. In this survey, we provide a comprehensive review of recent advances in applying LLMs to subjective language tasks, including sentiment analysis, emotion recognition, sarcasm detection, humor understanding, stance detection, metaphor interpretation, intent detection, and aesthetics assessment. We begin by clarifying the definition of subjective language from linguistic and cognitive perspectives, and we outline the unique challenges posed by subjective language (e.g. ambiguity, figurativeness, context dependence). We then survey the evolution of LLM architectures and techniques that particularly benefit subjectivity tasks, highlighting why LLMs are well-suited to model subtle human-like judgments. For each of the eight tasks, we summarize task definitions, key datasets, state-of-the-art LLM-based methods, and remaining challenges. We provide comparative insights, discussing commonalities and differences among tasks and how multi-task LLM approaches might yield unified models of subjectivity. Finally, we identify open issues such as data limitations, model bias, and ethical considerations, and suggest future research directions. We hope this survey will serve as a valuable resource for researchers and practitioners interested in the intersection of affective computing, figurative language processing, and large-scale language models.
Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task that aims to identify sentiment toward specific aspects of an entity. While large language models (LLMs) have shown strong performance in various natural language processing (NLP) tasks, their capabilities for Czech ABSA remain largely unexplored. In this work, we conduct a comprehensive evaluation of 19 LLMs of varying sizes and architectures on Czech ABSA, comparing their performance in zero-shot, few-shot, and fine-tuning scenarios. Our results show that small domain-specific models fine-tuned for ABSA outperform general-purpose LLMs in zero-shot and few-shot settings, while fine-tuned LLMs achieve state-of-the-art results. We analyze how factors such as multilingualism, model size, and recency influence performance and present an error analysis highlighting key challenges, particularly in aspect term prediction. Our findings provide insights into the suitability of LLMs for Czech ABSA and offer guidance for future research in this area.
In this paper, we introduce a novel Czech dataset for aspect-based sentiment analysis (ABSA), which consists of 3.1K manually annotated reviews from the restaurant domain. The dataset is built upon the older Czech dataset, which contained only separate labels for the basic ABSA tasks such as aspect term extraction or aspect polarity detection. Unlike its predecessor, our new dataset is specifically designed for more complex tasks, e.g. target-aspect-category detection. These advanced tasks require a unified annotation format, seamlessly linking sentiment elements (labels) together. Our dataset follows the format of the well-known SemEval-2016 datasets. This design choice allows effortless application and evaluation in cross-lingual scenarios, ultimately fostering cross-language comparisons with equivalent counterpart datasets in other languages. The annotation process engaged two trained annotators, yielding an impressive inter-annotator agreement rate of approximately 90%. Additionally, we provide 24M reviews without annotations suitable for unsupervised learning. We present robust monolingual baseline results achieved with various Transformer-based models and insightful error analysis to supplement our contributions. Our code and dataset are freely available for non-commercial research purposes.




In this study, we wish to showcase the unique utility of large language models (LLMs) in financial semantic annotation and alpha signal discovery. Leveraging a corpus of company-related tweets, we use an LLM to automatically assign multi-label event categories to high-sentiment-intensity tweets. We align these labeled sentiment signals with forward returns over 1-to-7-day horizons to evaluate their statistical efficacy and market tradability. Our experiments reveal that certain event labels consistently yield negative alpha, with Sharpe ratios as low as -0.38 and information coefficients exceeding 0.05, all statistically significant at the 95\% confidence level. This study establishes the feasibility of transforming unstructured social media text into structured, multi-label event variables. A key contribution of this work is its commitment to transparency and reproducibility; all code and methodologies are made publicly available. Our results provide compelling evidence that social media sentiment is a valuable, albeit noisy, signal in financial forecasting and underscore the potential of open-source frameworks to democratize algorithmic trading research.
Pretrained Language Models (PLMs) have excelled in various Natural Language Processing tasks, benefiting from large-scale pretraining and self-attention mechanism's ability to capture long-range dependencies. However, their performance on social media application tasks like rumor detection remains suboptimal. We attribute this to mismatches between pretraining corpora and social texts, inadequate handling of unique social symbols, and pretraining tasks ill-suited for modeling user engagements implicit in propagation structures. To address these issues, we propose a continue pretraining strategy called Post Engagement Prediction (PEP) to infuse information from propagation structures into PLMs. PEP makes models to predict root, branch, and parent relations between posts, capturing interactions of stance and sentiment crucial for rumor detection. We also curate and release large-scale Twitter corpus: TwitterCorpus (269GB text), and two unlabeled claim conversation datasets with propagation structures (UTwitter and UWeibo). Utilizing these resources and PEP strategy, we train a Twitter-tailored PLM called SoLM. Extensive experiments demonstrate PEP significantly boosts rumor detection performance across universal and social media PLMs, even in few-shot scenarios. On benchmark datasets, PEP enhances baseline models by 1.0-3.7\% accuracy, even enabling it to outperform current state-of-the-art methods on multiple datasets. SoLM alone, without high-level modules, also achieves competitive results, highlighting the strategy's effectiveness in learning discriminative post interaction features.




The rapid advancement of large language models (LLMs) has resulted in increasingly sophisticated AI-generated content, posing significant challenges in distinguishing LLM-generated text from human-written language. Existing detection methods, primarily based on lexical heuristics or fine-tuned classifiers, often suffer from limited generalizability and are vulnerable to paraphrasing, adversarial perturbations, and cross-domain shifts. In this work, we propose SentiDetect, a model-agnostic framework for detecting LLM-generated text by analyzing the divergence in sentiment distribution stability. Our method is motivated by the empirical observation that LLM outputs tend to exhibit emotionally consistent patterns, whereas human-written texts display greater emotional variability. To capture this phenomenon, we define two complementary metrics: sentiment distribution consistency and sentiment distribution preservation, which quantify stability under sentiment-altering and semantic-preserving transformations. We evaluate SentiDetect on five diverse datasets and a range of advanced LLMs,including Gemini-1.5-Pro, Claude-3, GPT-4-0613, and LLaMa-3.3. Experimental results demonstrate its superiority over state-of-the-art baselines, with over 16% and 11% F1 score improvements on Gemini-1.5-Pro and GPT-4-0613, respectively. Moreover, SentiDetect also shows greater robustness to paraphrasing, adversarial attacks, and text length variations, outperforming existing detectors in challenging scenarios.
Conversational recommender systems (CRS) based on Large Language Models (LLMs) need to constantly be aligned to the user preferences to provide satisfying and context-relevant item recommendations. The traditional supervised fine-tuning cannot capture the implicit feedback signal, e.g., dwell time, sentiment polarity, or engagement patterns. In this paper, we share a fine-tuning solution using human feedback reinforcement learning (RLHF) to maximize implied user feedback (IUF) in a multi-turn recommendation context. We specify a reward model $R_{\phi}$ learnt on weakly-labelled engagement information and maximize user-centric utility by optimizing the foundational LLM M_{\theta} through a proximal policy optimization (PPO) approach. The architecture models conversational state transitions $s_t \to a_t \to s_{t +1}$, where the action $a_t$ is associated with LLM-generated item suggestions only on condition of conversation history in the past. The evaluation across synthetic and real-world datasets (e.g.REDIAL, OpenDialKG) demonstrates that our RLHF-fine-tuned models can perform better in terms of top-$k$ recommendation accuracy, coherence, and user satisfaction compared to (arrow-zero-cmwrquca-teja-falset ensuite 2Round group-deca States penalty give up This paper shows that implicit signal alignment can be efficient in achieving scalable and user-adaptive design of CRS.
Large Language Models (LLMs) have started to demonstrate the ability to persuade humans, yet our understanding of how this dynamic transpires is limited. Recent work has used linear probes, lightweight tools for analyzing model representations, to study various LLM skills such as the ability to model user sentiment and political perspective. Motivated by this, we apply probes to study persuasion dynamics in natural, multi-turn conversations. We leverage insights from cognitive science to train probes on distinct aspects of persuasion: persuasion success, persuadee personality, and persuasion strategy. Despite their simplicity, we show that they capture various aspects of persuasion at both the sample and dataset levels. For instance, probes can identify the point in a conversation where the persuadee was persuaded or where persuasive success generally occurs across the entire dataset. We also show that in addition to being faster than expensive prompting-based approaches, probes can do just as well and even outperform prompting in some settings, such as when uncovering persuasion strategy. This suggests probes as a plausible avenue for studying other complex behaviours such as deception and manipulation, especially in multi-turn settings and large-scale dataset analysis where prompting-based methods would be computationally inefficient.
The surge in rich multimodal content on social media platforms has greatly advanced Multimodal Sentiment Analysis (MSA), with Large Language Models (LLMs) further accelerating progress in this field. Current approaches primarily leverage the knowledge and reasoning capabilities of parameter-heavy (Multimodal) LLMs for sentiment classification, overlooking autonomous multimodal sentiment reasoning generation in resource-constrained environments. Therefore, we focus on the Resource-Limited Joint Multimodal Sentiment Reasoning and Classification task, JMSRC, which simultaneously performs multimodal sentiment reasoning chain generation and sentiment classification only with a lightweight model. We propose a Multimodal Chain-of-Thought Reasoning Distillation model, MulCoT-RD, designed for JMSRC that employs a "Teacher-Assistant-Student" distillation paradigm to address deployment constraints in resource-limited environments. We first leverage a high-performance Multimodal Large Language Model (MLLM) to generate the initial reasoning dataset and train a medium-sized assistant model with a multi-task learning mechanism. A lightweight student model is jointly trained to perform efficient multimodal sentiment reasoning generation and classification. Extensive experiments on four datasets demonstrate that MulCoT-RD with only 3B parameters achieves strong performance on JMSRC, while exhibiting robust generalization and enhanced interpretability.




Multimodal sentiment analysis (MSA) aims to understand human emotions by integrating information from multiple modalities, such as text, audio, and visual data. However, existing methods often suffer from spurious correlations both within and across modalities, leading models to rely on statistical shortcuts rather than true causal relationships, thereby undermining generalization. To mitigate this issue, we propose a Multi-relational Multimodal Causal Intervention (MMCI) model, which leverages the backdoor adjustment from causal theory to address the confounding effects of such shortcuts. Specifically, we first model the multimodal inputs as a multi-relational graph to explicitly capture intra- and inter-modal dependencies. Then, we apply an attention mechanism to separately estimate and disentangle the causal features and shortcut features corresponding to these intra- and inter-modal relations. Finally, by applying the backdoor adjustment, we stratify the shortcut features and dynamically combine them with the causal features to encourage MMCI to produce stable predictions under distribution shifts. Extensive experiments on several standard MSA datasets and out-of-distribution (OOD) test sets demonstrate that our method effectively suppresses biases and improves performance.