Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Industrial image anomaly detection is a challenging problem owing to extreme class imbalance and the scarcity of labeled defective samples, particularly in few-shot settings. We propose BayPrAnoMeta, a Bayesian generalization of Proto-MAML for few-shot industrial image anomaly detection. Unlike existing Proto-MAML approaches that rely on deterministic class prototypes and distance-based adaptation, BayPrAnoMeta replaces prototypes with task-specific probabilistic normality models and performs inner-loop adaptation via a Bayesian posterior predictive likelihood. We model normal support embeddings with a Normal-Inverse-Wishart (NIW) prior, producing a Student-$t$ predictive distribution that enables uncertainty-aware, heavy-tailed anomaly scoring and is essential for robustness in extreme few-shot settings. We further extend BayPrAnoMeta to a federated meta-learning framework with supervised contrastive regularization for heterogeneous industrial clients and prove convergence to stationary points of the resulting nonconvex objective. Experiments on the MVTec AD benchmark demonstrate consistent and significant AUROC improvements over MAML, Proto-MAML, and PatchCore-based methods in few-shot anomaly detection settings.
In this paper, we present a Transformer-based architecture for 3D radar object detection that uses a novel Transformer Decoder as the prediction head to directly regress 3D bounding boxes and class scores from radar feature representations. To bridge multi-scale radar features and the decoder, we propose Pyramid Token Fusion (PTF), a lightweight module that converts a feature pyramid into a unified, scale-aware token sequence. By formulating detection as a set prediction problem with learnable object queries and positional encodings, our design models long-range spatial-temporal correlations and cross-feature interactions. This approach eliminates dense proposal generation and heuristic post-processing such as extensive non-maximum suppression (NMS) tuning. We evaluate the proposed framework on the RADDet, where it achieves significant improvements over state-of-the-art radar-only baselines.
Passive Radar Systems have received tremendous attention during the past few decades, due to their low cost and ability to remain covert during operation. Such systems do not transmit any energy themselves, but rely on a so-called Illuminator-of-Opportunity (IO), for example a commercial TV station. A network of Receiving Nodes (RN) receive the direct signal as well as reflections from possible targets. The RNs transmit information to a Central Node (CN), that performs the final target detection, localization and tracking. A large number of methods and algorithms for target detection and localization have been proposed in the literature. In the present contribution, the focus is on the seminal Extended Cancelation Algorithm (ECA), in which each RN estimates target parameters after canceling interference from the direct-path as well as clutter from unwanted stationary objects. This is done by exploiting a separate Reference Channel (RC), which captures the IO signal without interference apart from receiver noise. We derive the statistical properties of the ECA parameter estimates under the assumption of a high Signal-to-Noise Ratio (SNR), and we give a sufficient condition for the SNR in the RC to enable statistically efficient estimates. The theoretical results are corroborated through computer simulations, which show that the theory agrees well with empirical results above a certain SNR threshold. The results can be used to predict the performance of passive radar systems in given scenarios, which is useful for feasibility studies as well as system design.
We consider the problem of vision-based pose estimation for autonomous systems. While deep neural networks have been successfully used for vision-based tasks, they inherently lack provable guarantees on the correctness of their output, which is crucial for safety-critical applications. We present a framework for designing certifiable neural networks (NNs) for perception-based pose estimation that integrates physics-driven modeling with learning-based estimation. The proposed framework begins by leveraging the known geometry of planar objects commonly found in the environment, such as traffic signs and runway markings, referred to as target objects. At its core, it introduces a geometric generative model (GGM), a neural-network-like model whose parameters are derived from the image formation process of a target object observed by a camera. Once designed, the GGM can be used to train NN-based pose estimators with certified guarantees in terms of their estimation errors. We first demonstrate this framework in uncluttered environments, where the target object is the only object present in the camera's field of view. We extend this using ideas from NN reachability analysis to design certified object NN that can detect the presence of the target object in cluttered environments. Subsequently, the framework consolidates the certified object detector with the certified pose estimator to design a multi-stage perception pipeline that generalizes the proposed approach to cluttered environments, while maintaining its certified guarantees. We evaluate the proposed framework using both synthetic and real images of various planar objects commonly encountered by autonomous vehicles. Using images captured by an event-based camera, we show that the trained encoder can effectively estimate the pose of a traffic sign in accordance with the certified bound provided by the framework.
Object detection in sonar images is a key technology in underwater detection systems. Compared to natural images, sonar images contain fewer texture details and are more susceptible to noise, making it difficult for non-experts to distinguish subtle differences between classes. This leads to their inability to provide precise annotation data for sonar images. Therefore, designing effective object detection methods for sonar images with extremely limited labels is particularly important. To address this, we propose a teacher-student framework called RSOD, which aims to fully learn the characteristics of sonar images and develop a pseudo-label strategy suitable for these images to mitigate the impact of limited labels. First, RSOD calculates a reliability score by assessing the consistency of the teacher's predictions across different views. To leverage this score, we introduce an object mixed pseudo-label method to tackle the shortage of labeled data in sonar images. Finally, we optimize the performance of the student by implementing a reliability-guided adaptive constraint. By taking full advantage of unlabeled data, the student can perform well even in situations with extremely limited labels. Notably, on the UATD dataset, our method, using only 5% of labeled data, achieves results that can compete against those of our baseline algorithm trained on 100% labeled data. We also collected a new dataset to provide more valuable data for research in the field of sonar.
Source-Free Object Detection (SFOD) has garnered much attention in recent years by eliminating the need of source-domain data in cross-domain tasks, but existing SFOD methods suffer from the Source Bias problem, i.e. the adapted model remains skewed towards the source domain, leading to poor generalization and error accumulation during self-training. To overcome this challenge, we propose Debiased Source-free Object Detection (DSOD), a novel VFM-assisted SFOD framework that can effectively mitigate source bias with the help of powerful VFMs. Specifically, we propose Unified Feature Injection (UFI) module that integrates VFM features into the CNN backbone through Simple-Scale Extension (SSE) and Domain-aware Adaptive Weighting (DAAW). Then, we propose Semantic-aware Feature Regularization (SAFR) that constrains feature learning to prevent overfitting to source domain characteristics. Furthermore, we propose a VFM-free variant, termed DSOD-distill for computation-restricted scenarios through a novel Dual-Teacher distillation scheme. Extensive experiments on multiple benchmarks demonstrate that DSOD outperforms state-of-the-art SFOD methods, achieving 48.1% AP on Normal-to-Foggy weather adaptation, 39.3% AP on Cross-scene adaptation, and 61.4% AP on Synthetic-to-Real adaptation.
Training deep computer vision models requires manual oversight or hyperparameter tuning of the learning rate (LR) schedule. While existing adaptive optimizers schedule the LR automatically, they suffer from computational and memory overhead, incompatibility with regularization, and suboptimal LR choices. In this work, we introduce the ZENITH (Zero-overhead Evolution using Norm-Informed Training History) optimizer, which adapts the LR using the temporal evolution of the gradient norm. Image classification experiments spanning 6 CNN architectures and 6 benchmarks demonstrate that ZENITH achieves higher test accuracy in lower wall-clock time than baselines. It also yielded superior mAP in object detection, keypoint detection, and instance segmentation on MS COCO using the R-CNN family of models. Furthermore, its compatibility with regularization enables even better generalization.
Despite tremendous improvements in tasks such as image classification, object detection, and segmentation, the recognition of visual relationships, commonly modeled as the extraction of a graph from an image, remains a challenging task. We believe that this mainly stems from the fact that there is no canonical way to approach the visual graph recognition task. Most existing solutions are specific to a problem and cannot be transferred between different contexts out-of-the box, even though the conceptual problem remains the same. With broad applicability and simplicity in mind, in this paper we develop a method, \textbf{Gra}ph Recognition via \textbf{S}ubgraph \textbf{P}rediction (\textbf{GraSP}), for recognizing graphs in images. We show across several synthetic benchmarks and one real-world application that our method works with a set of diverse types of graphs and their drawings, and can be transferred between tasks without task-specific modifications, paving the way to a more unified framework for visual graph recognition.
The "You Only Look Once" (YOLO) framework has long served as the benchmark for real-time object detection, yet traditional iterations (YOLOv1 through YOLO11) remain constrained by the latency and hyperparameter sensitivity of Non-Maximum Suppression (NMS) post-processing. This paper analyzes a comprehensive analysis of YOLO26, an architecture that fundamentally redefines this paradigm by eliminating NMS in favor of a native end-to-end learning strategy. This study examines the critical innovations that enable this transition, specifically the introduction of the MuSGD optimizer for stabilizing lightweight backbones, STAL for small-target-aware assignment, and ProgLoss for dynamic supervision. Through a systematic review of official performance benchmarks, the results demonstrate that YOLO26 establishes a new Pareto front, outperforming a comprehensive suite of predecessors and state-of-the-art competitors (including RTMDet and DAMO-YOLO) in both inference speed and detection accuracy. The analysis confirms that by decoupling representation learning from heuristic post-processing, YOLOv26 successfully resolves the historical trade-off between latency and precision, signaling the next evolutionary step in edge-based computer vision.
LIDAR 3D object detection is one of the important tasks for autonomous vehicles. Ensuring that this task operates in real-time is crucial. Toward this, model quantization can be used to accelerate the runtime. However, directly applying model quantization often leads to performance degradation due to LIDAR's wide numerical distributions and extreme outliers. To address the wide numerical distribution, we proposed a mixed precision framework designed for PointPillars. Our framework first searches for sensitive layers with post-training quantization (PTQ) by quantizing one layer at a time to 8-bit integer (INT8) and evaluating each model for average precision (AP). The top-k most sensitive layers are assigned as floating point (FP). Combinations of these layers are greedily searched to produce candidate mixed precision models, which are finalized with either PTQ or quantization-aware training (QAT). Furthermore, to handle outliers, we observe that using a very small number of calibration data reduces the likelihood of encountering outliers, thereby improving PTQ performance. Our methods provides mixed precision models without training in the PTQ pipeline, while our QAT pipeline achieves the performance competitive to FP models. With TensorRT deployment, our models offer less latency and sizes by up to 2.35 and 2.26 times, respectively.