Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
Multimodal learning has shown significant promise for improving medical image analysis by integrating information from complementary data sources. This is widely employed for training vision-language models (VLMs) for cancer detection based on histology images and text reports. However, one of the main limitations in training these VLMs is the requirement for large paired datasets, raising concerns over privacy, and data collection, annotation, and maintenance costs. To address this challenge, we introduce CLIP-IT method to train a vision backbone model to classify histology images by pairing them with privileged textual information from an external source. At first, the modality pairing step relies on a CLIP-based model to match histology images with semantically relevant textual report data from external sources, creating an augmented multimodal dataset without the need for manually paired samples. Then, we propose a multimodal training procedure that distills the knowledge from the paired text modality to the unimodal image classifier for enhanced performance without the need for the textual data during inference. A parameter-efficient fine-tuning method is used to efficiently address the misalignment between the main (image) and paired (text) modalities. During inference, the improved unimodal histology classifier is used, with only minimal additional computational complexity. Our experiments on challenging PCAM, CRC, and BACH histology image datasets show that CLIP-IT can provide a cost-effective approach to leverage privileged textual information and outperform unimodal classifiers for histology.




Lung cancer, a severe form of malignant tumor that originates in the tissues of the lungs, can be fatal if not detected in its early stages. It ranks among the top causes of cancer-related mortality worldwide. Detecting lung cancer manually using chest X-Ray image or Computational Tomography (CT) scans image poses significant challenges for radiologists. Hence, there is a need for automatic diagnosis system of lung cancers from radiology images. With the recent emergence of deep learning, particularly through Convolutional Neural Networks (CNNs), the automated detection of lung cancer has become a much simpler task. Nevertheless, numerous researchers have addressed that the performance of conventional CNNs may be hindered due to class imbalance issue, which is prevalent in medical images. In this research work, we have proposed a novel CNN architecture ``Multi-Scale Dense Network (MSD-Net)'' (trained-from-scratch). The novelties we bring in the proposed model are (I) We introduce novel dense modules in the 4th block and 5th block of the CNN model. We have leveraged 3 depthwise separable convolutional (DWSC) layers, and one 1x1 convolutional layer in each dense module, in order to reduce complexity of the model considerably. (II) Additionally, we have incorporated one skip connection from 3rd block to 5th block and one parallel branch connection from 4th block to Global Average Pooling (GAP) layer. We have utilized dilated convolutional layer (with dilation rate=2) in the last parallel branch in order to extract multi-scale features. Extensive experiments reveal that our proposed model has outperformed latest CNN model ConvNext-Tiny, recent trend Vision Transformer (ViT), Pooling-based ViT (PiT), and other existing models by significant margins.




Artificial intelligence (AI) has significantly improved medical screening accuracy, particularly in cancer detection and risk assessment. However, traditional classification metrics often fail to account for imbalanced data, varying performance across cohorts, and patient-level inconsistencies, leading to biased evaluations. We propose the Cohort-Attention Evaluation Metrics (CAT) framework to address these challenges. CAT introduces patient-level assessment, entropy-based distribution weighting, and cohort-weighted sensitivity and specificity. Key metrics like CATSensitivity (CATSen), CATSpecificity (CATSpe), and CATMean ensure balanced and fair evaluation across diverse populations. This approach enhances predictive reliability, fairness, and interpretability, providing a robust evaluation method for AI-driven medical screening models.




This study explores open questions in the application of machine learning for breast cancer detection in mammograms. Current approaches often employ a two-stage transfer learning process: first, adapting a backbone model trained on natural images to develop a patch classifier, which is then used to create a single-view whole-image classifier. Additionally, many studies leverage both mammographic views to enhance model performance. In this work, we systematically investigate five key questions: (1) Is the intermediate patch classifier essential for optimal performance? (2) Do backbone models that excel in natural image classification consistently outperform others on mammograms? (3) When reducing mammogram resolution for GPU processing, does the learn-to-resize technique outperform conventional methods? (4) Does incorporating both mammographic views in a two-view classifier significantly improve detection accuracy? (5) How do these findings vary when analyzing low-quality versus high-quality mammograms? By addressing these questions, we developed models that outperform previous results for both single-view and two-view classifiers. Our findings provide insights into model architecture and transfer learning strategies contributing to more accurate and efficient mammogram analysis.
Oral cancer presents a formidable challenge in oncology, necessitating early diagnosis and accurate prognosis to enhance patient survival rates. Recent advancements in machine learning and data mining have revolutionized traditional diagnostic methodologies, providing sophisticated and automated tools for differentiating between benign and malignant oral lesions. This study presents a comprehensive review of cutting-edge data mining methodologies, including Neural Networks, K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and ensemble learning techniques, specifically applied to the diagnosis and prognosis of oral cancer. Through a rigorous comparative analysis, our findings reveal that Neural Networks surpass other models, achieving an impressive classification accuracy of 93,6 % in predicting oral cancer. Furthermore, we underscore the potential benefits of integrating feature selection and dimensionality reduction techniques to enhance model performance. These insights underscore the significant promise of advanced data mining techniques in bolstering early detection, optimizing treatment strategies, and ultimately improving patient outcomes in the realm of oral oncology.
Automatic lymph node segmentation is the cornerstone for advances in computer vision tasks for early detection and staging of cancer. Traditional segmentation methods are constrained by manual delineation and variability in operator proficiency, limiting their ability to achieve high accuracy. The introduction of deep learning technologies offers new possibilities for improving the accuracy of lymph node image analysis. This study evaluates the application of deep learning in lymph node segmentation and discusses the methodologies of various deep learning architectures such as convolutional neural networks, encoder-decoder networks, and transformers in analyzing medical imaging data across different modalities. Despite the advancements, it still confronts challenges like the shape diversity of lymph nodes, the scarcity of accurately labeled datasets, and the inadequate development of methods that are robust and generalizable across different imaging modalities. To the best of our knowledge, this is the first study that provides a comprehensive overview of the application of deep learning techniques in lymph node segmentation task. Furthermore, this study also explores potential future research directions, including multimodal fusion techniques, transfer learning, and the use of large-scale pre-trained models to overcome current limitations while enhancing cancer diagnosis and treatment planning strategies.
This paper introduces a unified approach to cluster refinement and anomaly detection in datasets. We propose a novel algorithm that iteratively reduces the intra-cluster variance of N clusters until a global minimum is reached, yielding tighter clusters than the standard k-means algorithm. We evaluate the method using intrinsic measures for unsupervised learning, including the silhouette coefficient, Calinski-Harabasz index, and Davies-Bouldin index, and extend it to anomaly detection by identifying points whose assignment causes a significant variance increase. External validation on synthetic data and the UCI Breast Cancer and UCI Wine Quality datasets employs the Jaccard similarity score, V-measure, and F1 score. Results show variance reductions of 18.7% and 88.1% on the synthetic and Wine Quality datasets, respectively, along with accuracy and F1 score improvements of 22.5% and 20.8% on the Wine Quality dataset.
Lung cancer remains one of the most prevalent and fatal diseases worldwide, demanding accurate and timely diagnosis and treatment. Recent advancements in large AI models have significantly enhanced medical image understanding and clinical decision-making. This review systematically surveys the state-of-the-art in applying large AI models to lung cancer screening, diagnosis, prognosis, and treatment. We categorize existing models into modality-specific encoders, encoder-decoder frameworks, and joint encoder architectures, highlighting key examples such as CLIP, BLIP, Flamingo, BioViL-T, and GLoRIA. We further examine their performance in multimodal learning tasks using benchmark datasets like LIDC-IDRI, NLST, and MIMIC-CXR. Applications span pulmonary nodule detection, gene mutation prediction, multi-omics integration, and personalized treatment planning, with emerging evidence of clinical deployment and validation. Finally, we discuss current limitations in generalizability, interpretability, and regulatory compliance, proposing future directions for building scalable, explainable, and clinically integrated AI systems. Our review underscores the transformative potential of large AI models to personalize and optimize lung cancer care.




The rising incidence of skin cancer, coupled with limited public awareness and a shortfall in clinical expertise, underscores an urgent need for advanced diagnostic aids. Artificial Intelligence (AI) has emerged as a promising tool in this domain, particularly for distinguishing malignant from benign skin lesions. Leveraging publicly available datasets of skin lesions, researchers have been developing AI-based diagnostic solutions. However, the integration of such computer systems in clinical settings is still nascent. This study aims to bridge this gap by employing a fusion of image processing techniques and machine learning algorithms, specifically neuro-fuzzy and colonial competition approaches. Applied to dermoscopic images from the ISIC database, our method achieved a notable accuracy of 94% on a dataset of 560 images. These results underscore the potential of our approach in aiding clinicians in the early detection of melanoma, thereby contributing significantly to skin cancer diagnostics.
According to the Pan American Health Organization, the number of cancer cases in Latin America was estimated at 4.2 million in 2022 and is projected to rise to 6.7 million by 2045. Osteosarcoma, one of the most common and deadly bone cancers affecting young people, is difficult to detect due to its unique texture and intensity. Surgical removal of osteosarcoma requires precise safety margins to ensure complete resection while preserving healthy tissue. Therefore, this study proposes a method for estimating the confidence interval of surgical safety margins in osteosarcoma surgery around the knee. The proposed approach uses MRI and X-ray data from open-source repositories, digital processing techniques, and unsupervised learning algorithms (such as k-means clustering) to define tumor boundaries. Experimental results highlight the potential for automated, patient-specific determination of safety margins.