Abstract:The rising incidence of skin cancer, coupled with limited public awareness and a shortfall in clinical expertise, underscores an urgent need for advanced diagnostic aids. Artificial Intelligence (AI) has emerged as a promising tool in this domain, particularly for distinguishing malignant from benign skin lesions. Leveraging publicly available datasets of skin lesions, researchers have been developing AI-based diagnostic solutions. However, the integration of such computer systems in clinical settings is still nascent. This study aims to bridge this gap by employing a fusion of image processing techniques and machine learning algorithms, specifically neuro-fuzzy and colonial competition approaches. Applied to dermoscopic images from the ISIC database, our method achieved a notable accuracy of 94% on a dataset of 560 images. These results underscore the potential of our approach in aiding clinicians in the early detection of melanoma, thereby contributing significantly to skin cancer diagnostics.
Abstract:In recent decades, artificial intelligence (AI) including machine learning (ML) have become vital for space missions enabling rapid data processing, advanced pattern recognition, and enhanced insight extraction. These tools are especially valuable in astrobiology applications, where models must distinguish biotic patterns from complex abiotic backgrounds. Advancing the integration of autonomy through AI and ML into space missions is a complex challenge, and we believe that by focusing on key areas, we can make significant progress and offer practical recommendations for tackling these obstacles.