Abstract:The advent of high-quality video generation models has amplified the need for robust watermarking schemes that can be used to reliably detect and track the provenance of generated videos. Existing video watermarking methods based on both post-hoc and in-generation approaches fail to simultaneously achieve imperceptibility, robustness, and computational efficiency. This work introduces a novel framework for in-generation video watermarking called SPDMark (pronounced `SpeedMark') based on selective parameter displacement of a video diffusion model. Watermarks are embedded into the generated videos by modifying a subset of parameters in the generative model. To make the problem tractable, the displacement is modeled as an additive composition of layer-wise basis shifts, where the final composition is indexed by the watermarking key. For parameter efficiency, this work specifically leverages low-rank adaptation (LoRA) to implement the basis shifts. During the training phase, the basis shifts and the watermark extractor are jointly learned by minimizing a combination of message recovery, perceptual similarity, and temporal consistency losses. To detect and localize temporal modifications in the watermarked videos, we use a cryptographic hashing function to derive frame-specific watermark messages from the given base watermarking key. During watermark extraction, maximum bipartite matching is applied to recover the correct frame order, even from temporally tampered videos. Evaluations on both text-to-video and image-to-video generation models demonstrate the ability of SPDMark to generate imperceptible watermarks that can be recovered with high accuracy and also establish its robustness against a variety of common video modifications.
Abstract:In recent years, multimodal anomaly detection methods have demonstrated remarkable performance improvements over video-only models. However, real-world multimodal data is often corrupted due to unforeseen environmental distortions. In this paper, we present the first-of-its-kind work that comprehensively investigates the adverse effects of corrupted modalities on multimodal anomaly detection task. To streamline this work, we propose RobustA, a carefully curated evaluation dataset to systematically observe the impacts of audio and visual corruptions on the overall effectiveness of anomaly detection systems. Furthermore, we propose a multimodal anomaly detection method, which shows notable resilience against corrupted modalities. The proposed method learns a shared representation space for different modalities and employs a dynamic weighting scheme during inference based on the estimated level of corruption. Our work represents a significant step forward in enabling the real-world application of multimodal anomaly detection, addressing situations where the likely events of modality corruptions occur. The proposed evaluation dataset with corrupted modalities and respective extracted features will be made publicly available.
Abstract:Multi-agent systems (MAS) based on Large Language Models (LLMs) have the potential to solve tasks that are beyond the reach of any single LLM. However, this potential can only be realized when the collaboration mechanism between agents is optimized. Specifically, optimizing the communication structure between agents is critical for fruitful collaboration. Most existing approaches rely on fixed topologies, pretrained graph generators, optimization over edges, or employ external LLM judges, thereby adding to the complexity. In this work, we introduce a response-conditioned framework that adapts communication on-the-fly. Agents independently generate responses to the user query and assess peer contributions using an approximation of the Shapley value. A directed acyclic graph (DAG) is then constructed to regulate the propagation of the responses among agents, which ensures stable and efficient message transmission from high-contributing agents to others. This graph is dynamically updated based on the agent responses from the previous collaboration round. Since the proposed framework enables the self-organization of agents without additional supervision or training, we refer to it as SelfOrg. The SelfOrg framework goes beyond task- and query-level optimization and takes into account the stochastic nature of agent responses. Experiments with both strong and weak LLM backends demonstrate robust performance, with significant gains in the weak regime where prior methods collapse. We also theoretically show that multiple agents increase the chance of correctness and that the correct responses naturally dominate the information flow.
Abstract:Medical Vision-Language Models (Med-VLMs) have demonstrated remarkable performance across diverse medical imaging tasks by leveraging large-scale image-text pretraining. However, their confidence calibration is largely unexplored, and so remains a significant challenge. As such, miscalibrated predictions can lead to overconfident errors, undermining clinical trust and decision-making reliability. To address this, we introduce CalibPrompt, the first framework to calibrate Med-VLMs during prompt tuning. CalibPrompt optimizes a small set of learnable prompts with carefully designed calibration objectives under scarce labeled data regime. First, we study a regularizer that attempts to align the smoothed accuracy with the predicted model confidences. Second, we introduce an angular separation loss to maximize textual feature proximity toward improving the reliability in confidence estimates of multimodal Med-VLMs. Extensive experiments on four publicly available Med-VLMs and five diverse medical imaging datasets reveal that CalibPrompt consistently improves calibration without drastically affecting clean accuracy. Our code is available at https://github.com/iabh1shekbasu/CalibPrompt.
Abstract:Content watermarking is an important tool for the authentication and copyright protection of digital media. However, it is unclear whether existing watermarks are robust against adversarial attacks. We present the winning solution to the NeurIPS 2024 Erasing the Invisible challenge, which stress-tests watermark robustness under varying degrees of adversary knowledge. The challenge consisted of two tracks: a black-box and beige-box track, depending on whether the adversary knows which watermarking method was used by the provider. For the beige-box track, we leverage an adaptive VAE-based evasion attack, with a test-time optimization and color-contrast restoration in CIELAB space to preserve the image's quality. For the black-box track, we first cluster images based on their artifacts in the spatial or frequency-domain. Then, we apply image-to-image diffusion models with controlled noise injection and semantic priors from ChatGPT-generated captions to each cluster with optimized parameter settings. Empirical evaluations demonstrate that our method successfully achieves near-perfect watermark removal (95.7%) with negligible impact on the residual image's quality. We hope that our attacks inspire the development of more robust image watermarking methods.
Abstract:Advancements in face recognition (FR) technologies have amplified privacy concerns, necessitating methods that protect identity while maintaining recognition utility. Existing face anonymization methods typically focus on obscuring identity but fail to meet the requirements of biometric template protection, including revocability, unlinkability, and irreversibility. We propose FaceAnonyMixer, a cancelable face generation framework that leverages the latent space of a pre-trained generative model to synthesize privacy-preserving face images. The core idea of FaceAnonyMixer is to irreversibly mix the latent code of a real face image with a synthetic code derived from a revocable key. The mixed latent code is further refined through a carefully designed multi-objective loss to satisfy all cancelable biometric requirements. FaceAnonyMixer is capable of generating high-quality cancelable faces that can be directly matched using existing FR systems without requiring any modifications. Extensive experiments on benchmark datasets demonstrate that FaceAnonyMixer delivers superior recognition accuracy while providing significantly stronger privacy protection, achieving over an 11% gain on commercial API compared to recent cancelable biometric methods. Code is available at: https://github.com/talha-alam/faceanonymixer.
Abstract:Watermarking offers a promising solution for GenAI providers to establish the provenance of their generated content. A watermark is a hidden signal embedded in the generated content, whose presence can later be verified using a secret watermarking key. A threat to GenAI providers are \emph{watermark stealing} attacks, where users forge a watermark into content that was \emph{not} generated by the provider's models without access to the secret key, e.g., to falsely accuse the provider. Stealing attacks collect \emph{harmless} watermarked samples from the provider's model and aim to maximize the expected success rate of generating \emph{harmful} watermarked samples. Our work focuses on mitigating stealing attacks while treating the underlying watermark as a black-box. Our contributions are: (i) Proposing a multi-key extension to mitigate stealing attacks that can be applied post-hoc to any watermarking method across any modality. (ii) We provide theoretical guarantees and demonstrate empirically that our method makes forging substantially less effective across multiple datasets, and (iii) we formally define the threat of watermark forging as the task of generating harmful, watermarked content and model this threat via security games.
Abstract:Large pre-trained models are commonly adapted to downstream tasks using parameter-efficient fine-tuning methods such as Low-Rank Adaptation (LoRA), which injects small trainable low-rank matrices instead of updating all weights. While LoRA dramatically reduces trainable parameters with little overhead, it can still underperform full fine-tuning in accuracy and often converges more slowly. We introduce LoFT, a novel low-rank adaptation method that behaves like full fine-tuning by aligning the optimizer's internal dynamics with those of updating all model weights. LoFT not only learns weight updates in a low-rank subspace (like LoRA) but also properly projects the optimizer's first and second moments (Adam's momentum and variance) into the same subspace, mirroring full-model updates. By aligning the low-rank update itself with the full update, LoFT eliminates the need for tuning extra hyperparameters, e.g., LoRA scaling factor $\alpha$. Empirically, this approach substantially narrows the performance gap between adapter-based tuning and full fine-tuning and consistently outperforms standard LoRA-style methods, all without increasing inference cost.




Abstract:Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. However, a critical bottleneck exists: the dependency on CT-PET data concurrently for training and inference, posing a challenge due to the limited availability of PET scans. Hence, there is a clear need for a flexible and efficient framework that can be trained with the widely available CT scans and can be still adapted for PET scans when they become available. In this work, we propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model trained only on CT scans such that it can be efficiently adapted for use with PET scans when they become available. This framework is further extended to perform prognosis task maintaining the same efficient cross-modal fine-tuning approach. The proposed approach is tested with two well-known segementation backbones, namely UNETR and Swin UNETR. Our approach offers two main advantages. Firstly, we leverage the inherent modularity of the transformer architecture and perform low-rank adaptation (LoRA) as well as decomposed low-rank adaptation (DoRA) of the attention weights to achieve parameter-efficient adaptation. Secondly, by minimizing cross-modal entanglement, PEMMA allows updates using only one modality without causing catastrophic forgetting in the other. Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality. Furthermore, in prognosis, our method improves the concordance index by +10% when adapting a CT-pretrained model to include PET scans, and by +23% when adapting for both PET and EHR data.




Abstract:Collaborative learning enables multiple participants to learn a single global model by exchanging focused updates instead of sharing data. One of the core challenges in collaborative learning is ensuring that participants are rewarded fairly for their contributions, which entails two key sub-problems: contribution assessment and reward allocation. This work focuses on fair reward allocation, where the participants are incentivized through model rewards - differentiated final models whose performance is commensurate with the contribution. In this work, we leverage the concept of slimmable neural networks to collaboratively learn a shared global model whose performance degrades gracefully with a reduction in model width. We also propose a post-training fair allocation algorithm that determines the model width for each participant based on their contributions. We theoretically study the convergence of our proposed approach and empirically validate it using extensive experiments on different datasets and architectures. We also extend our approach to enable training-time model reward allocation.