Information extraction is the process of automatically extracting structured information from unstructured text data.
Time series forecasting has traditionally been formulated as a model-centric, static, and single-pass prediction problem that maps historical observations to future values. While this paradigm has driven substantial progress, it proves insufficient in adaptive and multi-turn settings where forecasting requires informative feature extraction, reasoning-driven inference, iterative refinement, and continual adaptation over time. In this paper, we argue for agentic time series forecasting (ATSF), which reframes forecasting as an agentic process composed of perception, planning, action, reflection, and memory. Rather than focusing solely on predictive models, ATSF emphasizes organizing forecasting as an agentic workflow that can interact with tools, incorporate feedback from outcomes, and evolve through experience accumulation. We outline three representative implementation paradigms -- workflow-based design, agentic reinforcement learning, and a hybrid agentic workflow paradigm -- and discuss the opportunities and challenges that arise when shifting from model-centric prediction to agentic forecasting. Together, this position aims to establish agentic forecasting as a foundation for future research at the intersection of time series forecasting.
Diffusion models emerged as a leading approach in text-to-image generation, producing high-quality images from textual descriptions. However, attempting to achieve detailed control to get a desired image solely through text remains a laborious trial-and-error endeavor. Recent methods have introduced image-level controls alongside with text prompts, using prior images to extract conditional information such as edges, segmentation and depth maps. While effective, these methods apply conditions uniformly across the entire image, limiting localized control. In this paper, we propose a novel methodology to enable precise local control over user-defined regions of an image, while leaving to the diffusion model the task of autonomously generating the remaining areas according to the original prompt. Our approach introduces a new training framework that incorporates masking features and an additional loss term, which leverages the prediction of the initial latent vector at any diffusion step to enhance the correspondence between the current step and the final sample in the latent space. Extensive experiments demonstrate that our method effectively synthesizes high-quality images with controlled local conditions.
Machine unlearning for LLMs aims to remove sensitive or copyrighted data from trained models. However, the true efficacy of current unlearning methods remains uncertain. Standard evaluation metrics rely on benign queries that often mistake superficial information suppression for genuine knowledge removal. Such metrics fail to detect residual knowledge that more sophisticated prompting strategies could still extract. We introduce REBEL, an evolutionary approach for adversarial prompt generation designed to probe whether unlearned data can still be recovered. Our experiments demonstrate that REBEL successfully elicits ``forgotten'' knowledge from models that seemed to be forgotten in standard unlearning benchmarks, revealing that current unlearning methods may provide only a superficial layer of protection. We validate our framework on subsets of the TOFU and WMDP benchmarks, evaluating performance across a diverse suite of unlearning algorithms. Our experiments show that REBEL consistently outperforms static baselines, recovering ``forgotten'' knowledge with Attack Success Rates (ASRs) reaching up to 60% on TOFU and 93% on WMDP. We will make all code publicly available upon acceptance. Code is available at https://github.com/patryk-rybak/REBEL/
Electrocardiogram (ECG) digitization-converting paper-based or scanned ECG images back into time-series signals-is critical for leveraging decades of legacy clinical data in modern deep learning applications. However, progress has been hindered by the lack of large-scale datasets providing both ECG images and their corresponding ground truth signals with comprehensive annotations. We introduce PTB-XL-Image-17K, a complete synthetic ECG image dataset comprising 17,271 high-quality 12-lead ECG images generated from the PTB-XL signal database. Our dataset uniquely provides five complementary data types per sample: (1) realistic ECG images with authentic grid patterns and annotations (50% with visible grid, 50% without), (2) pixel-level segmentation masks, (3) ground truth time-series signals, (4) bounding box annotations in YOLO format for both lead regions and lead name labels, and (5) comprehensive metadata including visual parameters and patient information. We present an open-source Python framework enabling customizable dataset generation with controllable parameters including paper speed (25/50 mm/s), voltage scale (5/10 mm/mV), sampling rate (500 Hz), grid appearance (4 colors), and waveform characteristics. The dataset achieves 100% generation success rate with an average processing time of 1.35 seconds per sample. PTB-XL-Image-17K addresses critical gaps in ECG digitization research by providing the first large-scale resource supporting the complete pipeline: lead detection, waveform segmentation, and signal extraction with full ground truth for rigorous evaluation. The dataset, generation framework, and documentation are publicly available at https://github.com/naqchoalimehdi/PTB-XL-Image-17K and https://doi.org/10.5281/zenodo.18197519.
Trust has stood out more than ever in the light of recent innovations. Some examples are advances in artificial intelligence that make machines more and more humanlike, and the introduction of decentralized technologies (e.g. blockchains), which creates new forms of (decentralized) trust. These new developments have the potential to improve the provision of products and services, as well as to contribute to individual and collective well-being. However, their adoption depends largely on trust. In order to build trustworthy systems, along with defining laws, regulations and proper governance models for new forms of trust, it is necessary to properly conceptualize trust, so that it can be understood both by humans and machines. This paper is the culmination of a long-term research program of providing a solid ontological foundation on trust, by creating reference conceptual models to support information modeling, automated reasoning, information integration and semantic interoperability tasks. To address this, a Reference Ontology of Trust (ONTrust) was developed, grounded on the Unified Foundational Ontology and specified in OntoUML, which has been applied in several initiatives, to demonstrate, for example, how it can be used for conceptual modeling and enterprise architecture design, for language evaluation and (re)design, for trust management, for requirements engineering, and for trustworthy artificial intelligence (AI) in the context of affective Human-AI teaming. ONTrust formally characterizes the concept of trust and its different types, describes the different factors that can influence trust, as well as explains how risk emerges from trust relations. To illustrate the working of ONTrust, the ontology is applied to model two case studies extracted from the literature.
In the evolving field of robotics, the challenge of Object Navigation (ON) in household environments has attracted significant interest. Existing ON benchmarks typically place objects in locations guided by general scene priors, without accounting for the specific placement habits of individual users. This omission limits the adaptability of navigation agents in personalized household environments. To address this, we introduce User-centric Object Navigation (UcON), a new benchmark that incorporates user-specific object placement habits, referred to as user habits. This benchmark requires agents to leverage these user habits for more informed decision-making during navigation. UcON encompasses approximately 22,600 user habits across 489 object categories. UcON is, to our knowledge, the first benchmark that explicitly formalizes and evaluates habit-conditioned object navigation at scale and covers the widest range of target object categories. Additionally, we propose a habit retrieval module to extract and utilize habits related to target objects, enabling agents to infer their likely locations more effectively. Experimental results demonstrate that current SOTA methods exhibit substantial performance degradation under habit-driven object placement, while integrating user habits consistently improves success rates. Code is available at https://github.com/whcpumpkin/User-Centric-Object-Navigation.
Emotion recognition in speech presents a complex multimodal challenge, requiring comprehension of both linguistic content and vocal expressivity, particularly prosodic features such as fundamental frequency, intensity, and temporal dynamics. Although large language models (LLMs) have shown promise in reasoning over textual transcriptions for emotion recognition, they typically neglect fine-grained prosodic information, limiting their effectiveness and interpretability. In this work, we propose VowelPrompt, a linguistically grounded framework that augments LLM-based emotion recognition with interpretable, fine-grained vowel-level prosodic cues. Drawing on phonetic evidence that vowels serve as primary carriers of affective prosody, VowelPrompt extracts pitch-, energy-, and duration-based descriptors from time-aligned vowel segments, and converts these features into natural language descriptions for better interpretability. Such a design enables LLMs to jointly reason over lexical semantics and fine-grained prosodic variation. Moreover, we adopt a two-stage adaptation procedure comprising supervised fine-tuning (SFT) followed by Reinforcement Learning with Verifiable Reward (RLVR), implemented via Group Relative Policy Optimization (GRPO), to enhance reasoning capability, enforce structured output adherence, and improve generalization across domains and speaker variations. Extensive evaluations across diverse benchmark datasets demonstrate that VowelPrompt consistently outperforms state-of-the-art emotion recognition methods under zero-shot, fine-tuned, cross-domain, and cross-linguistic conditions, while enabling the generation of interpretable explanations that are jointly grounded in contextual semantics and fine-grained prosodic structure.
Traditional deep learning models often lack annotated data, especially in cross-domain applications such as anomaly detection, which is critical for early disease diagnosis in medicine and defect detection in industry. To address this challenge, we propose Multi-AD, a convolutional neural network (CNN) model for robust unsupervised anomaly detection across medical and industrial images. Our approach employs the squeeze-and-excitation (SE) block to enhance feature extraction via channel-wise attention, enabling the model to focus on the most relevant features and detect subtle anomalies. Knowledge distillation (KD) transfers informative features from the teacher to the student model, enabling effective learning of the differences between normal and anomalous data. Then, the discriminator network further enhances the model's capacity to distinguish between normal and anomalous data. At the inference stage, by integrating multi-scale features, the student model can detect anomalies of varying sizes. The teacher-student (T-S) architecture ensures consistent representation of high-dimensional features while adapting them to enhance anomaly detection. Multi-AD was evaluated on several medical datasets, including brain MRI, liver CT, and retina OCT, as well as industrial datasets, such as MVTec AD, demonstrating strong generalization across multiple domains. Experimental results demonstrated that our approach consistently outperformed state-of-the-art models, achieving the best average AUROC for both image-level (81.4% for medical and 99.6% for industrial) and pixel-level (97.0% for medical and 98.4% for industrial) tasks, making it effective for real-world applications.
Incorporating Machine Learning (ML) into material property prediction has become a crucial step in accelerating materials discovery. A key challenge is the severe lack of training data, as many properties are too complicated to calculate with high-throughput first principles techniques. To address this, recent research has created experimental databases from information extracted from scientific literature. However, most existing experimental databases do not provide full atomic coordinate information, which prevents them from supporting advanced ML architectures such as Graph Neural Networks (GNNs). In this work, we propose to bridge this gap through an alignment process between experimental databases and Crystallographic Information Files (CIF) from the Inorganic Crystal Structure Database (ICSD). Our approach enables the creation of a database that can fully leverage state-of-the-art model architectures for material property prediction. It also opens the door to utilizing transfer learning to improve prediction accuracy. To validate our approach, we align NEMAD with the ICSD and compare models trained on the resulting database to those trained on NEMAD originally. We demonstrate significant improvements in both Mean Absolute Error (MAE) and Correct Classification Rate (CCR) in predicting the ordering temperatures and magnetic ground states of magnetic materials, respectively.
Humans acquire semantic object representations from egocentric visual streams with minimal supervision. Importantly, the visual system processes with high resolution only the center of its field of view and learns similar representations for visual inputs occurring close in time. This emphasizes slowly changing information around gaze locations. This study investigates the role of central vision and slowness learning in the formation of semantic object representations from human-like visual experience. We simulate five months of human-like visual experience using the Ego4D dataset and generate gaze coordinates with a state-of-the-art gaze prediction model. Using these predictions, we extract crops that mimic central vision and train a time-contrastive Self-Supervised Learning model on them. Our results show that combining temporal slowness and central vision improves the encoding of different semantic facets of object representations. Specifically, focusing on central vision strengthens the extraction of foreground object features, while considering temporal slowness, especially during fixational eye movements, allows the model to encode broader semantic information about objects. These findings provide new insights into the mechanisms by which humans may develop semantic object representations from natural visual experience.