Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Sep 10, 2025
Abstract:Hyperspectral object tracking holds great promise due to the rich spectral information and fine-grained material distinctions in hyperspectral images, which are beneficial in challenging scenarios. While existing hyperspectral trackers have made progress by either transforming hyperspectral data into false-color images or incorporating modality fusion strategies, they often fail to capture the intrinsic spectral information, temporal dependencies, and cross-depth interactions. To address these limitations, a new hyperspectral object tracking network equipped with Mamba (HyMamba), is proposed. It unifies spectral, cross-depth, and temporal modeling through state space modules (SSMs). The core of HyMamba lies in the Spectral State Integration (SSI) module, which enables progressive refinement and propagation of spectral features with cross-depth and temporal spectral information. Embedded within each SSI, the Hyperspectral Mamba (HSM) module is introduced to learn spatial and spectral information synchronously via three directional scanning SSMs. Based on SSI and HSM, HyMamba constructs joint features from false-color and hyperspectral inputs, and enhances them through interaction with original spectral features extracted from raw hyperspectral images. Extensive experiments conducted on seven benchmark datasets demonstrate that HyMamba achieves state-of-the-art performance. For instance, it achieves 73.0\% of the AUC score and 96.3\% of the DP@20 score on the HOTC2020 dataset. The code will be released at https://github.com/lgao001/HyMamba.
Via

Sep 04, 2025
Abstract:Despite signi cant progress in semi-supervised medical image segmentation, most existing segmentation networks overlook e ective methodological guidance for feature extraction and important prior information from datasets. In this paper, we develop a semi-supervised medical image segmentation framework that e ectively integrates spatial regularization methods and volume priors. Speci cally, our approach integrates a strong explicit volume prior at the image scale and Threshold Dynamics spatial regularization, both derived from variational models, into the backbone segmentation network. The target region volumes for each unlabeled image are estimated by a regression network, which e ectively regularizes the backbone segmentation network through an image-scale Wasserstein distance constraint, ensuring that the class ratios in the segmentation results for each unlabeled image match those predicted by the regression network. Additionally, we design a dataset-scale Wasserstein distance loss function based on a weak implicit volume prior, which enforces that the volume distribution predicted for the unlabeled dataset is similar to that of labeled dataset. Experimental results on the 2017 ACDC dataset, PROMISE12 dataset, and thigh muscle MR image dataset show the superiority of the proposed method.
Via

Sep 10, 2025
Abstract:As a result of continuous advances in Music Information Retrieval (MIR) technology, generating and distributing music has become more diverse and accessible. In this context, interest in music intellectual property protection is increasing to safeguard individual music copyrights. In this work, we propose a system for detecting music plagiarism by combining various MIR technologies. We developed a music segment transcription system that extracts musically meaningful segments from audio recordings to detect plagiarism across different musical formats. With this system, we compute similarity scores based on multiple musical features that can be evaluated through comprehensive musical analysis. Our approach demonstrated promising results in music plagiarism detection experiments, and the proposed method can be applied to real-world music scenarios. We also collected a Similar Music Pair (SMP) dataset for musical similarity research using real-world cases. The dataset are publicly available.
* Accepted in APSIPA 2025 but not published yet(will be published in 2
month..), Arxiv preprint ready for references in future-works
Via

Sep 05, 2025
Abstract:Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.
* 11 pages, 1 figures, 5 tables
Via

Sep 05, 2025
Abstract:Estimating accurate and well-calibrated predictive uncertainty is important for enhancing the reliability of computer vision models, especially in safety-critical applications like traffic scene perception. While ensemble methods are commonly used to quantify uncertainty by combining multiple models, a mixture of experts (MoE) offers an efficient alternative by leveraging a gating network to dynamically weight expert predictions based on the input. Building on the promising use of MoEs for semantic segmentation in our previous works, we show that well-calibrated predictive uncertainty estimates can be extracted from MoEs without architectural modifications. We investigate three methods to extract predictive uncertainty estimates: predictive entropy, mutual information, and expert variance. We evaluate these methods for an MoE with two experts trained on a semantical split of the A2D2 dataset. Our results show that MoEs yield more reliable uncertainty estimates than ensembles in terms of conditional correctness metrics under out-of-distribution (OOD) data. Additionally, we evaluate routing uncertainty computed via gate entropy and find that simple gating mechanisms lead to better calibration of routing uncertainty estimates than more complex classwise gates. Finally, our experiments on the Cityscapes dataset suggest that increasing the number of experts can further enhance uncertainty calibration. Our code is available at https://github.com/KASTEL-MobilityLab/mixtures-of-experts/.
* Accepted for publication at the STREAM workshop at ICCV2025
Via

Sep 11, 2025
Abstract:Keeping pace with the rapid growth of academia literature presents a significant challenge for researchers, funding bodies, and academic societies. To address the time-consuming manual effort required for scholarly discovery, we present a novel, fully automated system that transitions from data discovery to direct action. Our pipeline demonstrates how a specialized AI agent, 'Agent-E', can be tasked with identifying papers from specific geographic regions within conference proceedings and then executing a Robotic Process Automation (RPA) to complete a predefined action, such as submitting a nomination form. We validated our system on 586 papers from five different conferences, where it successfully identified every target paper with a recall of 100% and a near perfect accuracy of 99.4%. This demonstration highlights the potential of task-oriented AI agents to not only filter information but also to actively participate in and accelerate the workflows of the academic community.
* 5 pages, 2 figures
Via

Sep 10, 2025
Abstract:The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications.
* Accepted to the 26th International Society for Music Information
Retrieval (ISMIR) Conference, 2025
Via

Sep 04, 2025
Abstract:In this paper, we introduce Technical-Embeddings, a novel framework designed to optimize semantic retrieval in technical documentation, with applications in both hardware and software development. Our approach addresses the challenges of understanding and retrieving complex technical content by leveraging the capabilities of Large Language Models (LLMs). First, we enhance user queries by generating expanded representations that better capture user intent and improve dataset diversity, thereby enriching the fine-tuning process for embedding models. Second, we apply summary extraction techniques to encode essential contextual information, refining the representation of technical documents. To further enhance retrieval performance, we fine-tune a bi-encoder BERT model using soft prompting, incorporating separate learning parameters for queries and document context to capture fine-grained semantic nuances. We evaluate our approach on two public datasets, RAG-EDA and Rust-Docs-QA, demonstrating that Technical-Embeddings significantly outperforms baseline models in both precision and recall. Our findings highlight the effectiveness of integrating query expansion and contextual summarization to enhance information access and comprehension in technical domains. This work advances the state of Retrieval-Augmented Generation (RAG) systems, offering new avenues for efficient and accurate technical document retrieval in engineering and product development workflows.
Via

Sep 10, 2025
Abstract:Audio and music generation systems have been remarkably developed in the music information retrieval (MIR) research field. The advancement of these technologies raises copyright concerns, as ownership and authorship of AI-generated music (AIGM) remain unclear. Also, it can be difficult to determine whether a piece was generated by AI or composed by humans clearly. To address these challenges, we aim to improve the accuracy of AIGM detection by analyzing the structural patterns of music segments. Specifically, to extract musical features from short audio clips, we integrated various pre-trained models, including self-supervised learning (SSL) models or an audio effect encoder, each within our suggested transformer-based framework. Furthermore, for long audio, we developed a segment transformer that divides music into segments and learns inter-segment relationships. We used the FakeMusicCaps and SONICS datasets, achieving high accuracy in both the short-audio and full-audio detection experiments. These findings suggest that integrating segment-level musical features into long-range temporal analysis can effectively enhance both the performance and robustness of AIGM detection systems.
Via

Sep 10, 2025
Abstract:This research introduces a novel psychometric method for analyzing textual data using large language models. By leveraging contextual embeddings to create contextual scores, we transform textual data into response data suitable for psychometric analysis. Treating documents as individuals and words as items, this approach provides a natural psychometric interpretation under the assumption that certain keywords, whose contextual meanings vary significantly across documents, can effectively differentiate documents within a corpus. The modeling process comprises two stages: obtaining contextual scores and performing psychometric analysis. In the first stage, we utilize natural language processing techniques and encoder based transformer models to identify common keywords and generate contextual scores. In the second stage, we employ various types of factor analysis, including exploratory and bifactor models, to extract and define latent factors, determine factor correlations, and identify the most significant words associated with each factor. Applied to the Wiki STEM corpus, our experimental results demonstrate the method's potential to uncover latent knowledge dimensions and patterns within textual data. This approach not only enhances the psychometric analysis of textual data but also holds promise for applications in fields rich in textual information, such as education, psychology, and law.
Via
