Information extraction is the process of automatically extracting structured information from unstructured text data.
Weak signal learning (WSL) is a common challenge in many fields like fault diagnosis, medical imaging, and autonomous driving, where critical information is often masked by noise and interference, making feature identification difficult. Even in tasks with abundant strong signals, the key to improving model performance often lies in effectively extracting weak signals. However, the lack of dedicated datasets has long constrained research. To address this, we construct the first specialized dataset for weak signal feature learning, containing 13,158 spectral samples. It features low SNR dominance (over 55% samples with SNR below 50) and extreme class imbalance (class ratio up to 29:1), providing a challenging benchmark for classification and regression in weak signal scenarios. We also propose a dual-view representation (vector + time-frequency map) and a PDVFN model tailored to low SNR, distribution skew, and dual imbalance. PDVFN extracts local sequential features and global frequency-domain structures in parallel, following principles of local enhancement, sequential modeling, noise suppression, multi-scale capture, frequency extraction, and global perception. This multi-source complementarity enhances representation for low-SNR and imbalanced data, offering a novel solution for WSL tasks like astronomical spectroscopy. Experiments show our method achieves higher accuracy and robustness in handling weak signals, high noise, and extreme class imbalance, especially in low SNR and imbalanced scenarios. This study provides a dedicated dataset, a baseline model, and establishes a foundation for future WSL research.
When applied directly in an end-to-end manner to medical follow-up tasks, Large Language Models (LLMs) often suffer from uncontrolled dialog flow and inaccurate information extraction due to the complexity of follow-up forms. To address this limitation, we designed and compared two follow-up chatbot systems: an end-to-end LLM-based system (control group) and a modular pipeline with structured process control (experimental group). Experimental results show that while the end-to-end approach frequently fails on lengthy and complex forms, our modular method-built on task decomposition, semantic clustering, and flow management-substantially improves dialog stability and extraction accuracy. Moreover, it reduces the number of dialogue turns by 46.73% and lowers token consumption by 80% to 87.5%. These findings highlight the necessity of integrating external control mechanisms when deploying LLMs in high-stakes medical follow-up scenarios.
While Large Multimodal Models (LMMs) have made significant progress, they remain largely text-centric, relying on language as their core reasoning modality. As a result, they are limited in their ability to handle reasoning tasks that are predominantly visual. Recent approaches have sought to address this by supervising intermediate visual steps with helper images, depth maps, or image crops. However, these strategies impose restrictive priors on what "useful" visual abstractions look like, add heavy annotation costs, and struggle to generalize across tasks. To address this critical limitation, we propose a task-agnostic mechanism that trains LMMs to discover and use visual reasoning tokens without explicit supervision. These tokens attend globally and re-encode the image in a task-adaptive way, enabling the model to extract relevant visual information without hand-crafted supervision. Our approach outperforms direct fine-tuning and achieves state-of-the-art results on a diverse range of vision-centric tasks -- including those where intermediate abstractions are hard to specify -- while also generalizing to multi-task instruction tuning.
Multimodal Large Language Model (MLLM) Personalization is a critical research problem that facilitates personalized dialogues with MLLMs targeting specific entities (known as personalized concepts). However, existing methods and benchmarks focus on the simple, context-agnostic visual identification and textual replacement of the personalized concept (e.g., "A yellow puppy" -> "Your puppy Mochi"), overlooking the ability to support long-context conversations. An ideal personalized MLLM assistant is capable of engaging in long-context dialogues with humans and continually improving its experience quality by learning from past dialogue histories. To bridge this gap, we propose LCMP, the first Long-Context MLLM Personalization evaluation benchmark. LCMP assesses the capability of MLLMs in perceiving variations of personalized concepts and generating contextually appropriate personalized responses that reflect these variations. As a strong baseline for LCMP, we introduce a novel training-free and state-aware framework TAME. TAME endows MLLMs with double memories to manage the temporal and persistent variations of each personalized concept in a differentiated manner. In addition, TAME incorporates a new training-free Retrieve-then-Align Augmented Generation (RA2G) paradigm. RA2G introduces an alignment step to extract the contextually fitted information from the multi-memory retrieved knowledge to the current questions, enabling better interactions for complex real-world user queries. Experiments on LCMP demonstrate that TAME achieves the best performance, showcasing remarkable and evolving interaction experiences in long-context scenarios.
Real-world image captions often lack contextual depth, omitting crucial details such as event background, temporal cues, outcomes, and named entities that are not visually discernible. This gap limits the effectiveness of image understanding in domains like journalism, education, and digital archives, where richer, more informative descriptions are essential. To address this, we propose a multimodal pipeline that augments visual input with external textual knowledge. Our system retrieves semantically similar images using BEIT-3 (Flickr30k-384 and COCO-384) and SigLIP So-384, reranks them using ORB and SIFT for geometric alignment, and extracts contextual information from related articles via semantic search. A fine-tuned Qwen3 model with QLoRA then integrates this context with base captions generated by Instruct BLIP (Vicuna-7B) to produce event-enriched, context-aware descriptions. Evaluated on the OpenEvents v1 dataset, our approach generates significantly more informative captions compared to traditional methods, showing strong potential for real-world applications requiring deeper visual-textual understanding
Unsupervised human motion segmentation (HMS) can be effectively achieved using subspace clustering techniques. However, traditional methods overlook the role of temporal semantic exploration in HMS. This paper explores the use of temporal vision semantics (TVS) derived from human motion sequences, leveraging the image-to-text capabilities of a large language model (LLM) to enhance subspace clustering performance. The core idea is to extract textual motion information from consecutive frames via LLM and incorporate this learned information into the subspace clustering framework. The primary challenge lies in learning TVS from human motion sequences using LLM and integrating this information into subspace clustering. To address this, we determine whether consecutive frames depict the same motion by querying the LLM and subsequently learn temporal neighboring information based on its response. We then develop a TVS-integrated subspace clustering approach, incorporating subspace embedding with a temporal regularizer that induces each frame to share similar subspace embeddings with its temporal neighbors. Additionally, segmentation is performed based on subspace embedding with a temporal constraint that induces the grouping of each frame with its temporal neighbors. We also introduce a feedback-enabled framework that continuously optimizes subspace embedding based on the segmentation output. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art approaches on four benchmark human motion datasets.




With the rapid growth of unstructured data from social media, reviews, and forums, text mining has become essential in Information Systems (IS) for extracting actionable insights. Summarization can condense fragmented, emotion-rich posts, but existing methods-optimized for structured news-struggle with noisy, informal content. Emotional cues are critical for IS tasks such as brand monitoring and market analysis, yet few studies integrate sentiment modeling into summarization of short user-generated texts. We propose a sentiment-aware framework extending extractive (TextRank) and abstractive (UniLM) approaches by embedding sentiment signals into ranking and generation processes. This dual design improves the capture of emotional nuances and thematic relevance, producing concise, sentiment-enriched summaries that enhance timely interventions and strategic decision-making in dynamic online environments.
Dynamic graphs are widely used to represent evolving real-world networks. Temporal Graph Neural Networks (TGNNs) have emerged as a powerful tool for processing such graphs, but the lack of transparency and explainability limits their practical adoption. Research on TGNN explainability is still in its early stages and faces several key issues: (i) Current methods are tailored to specific TGNN types, restricting generality. (ii) They suffer from high computational costs, making them unsuitable for large-scale networks. (iii) They often overlook the structural connectivity of explanations and require prior knowledge, reducing user-friendliness. To address these issues, we propose GRExplainer, the first universal, efficient, and user-friendly explanation method for TGNNs. GRExplainer extracts node sequences as a unified feature representation, making it independent of specific input formats and thus applicable to both snapshot-based and event-based TGNNs (the major types of TGNNs). By utilizing breadth-first search and temporal information to construct input node sequences, GRExplainer reduces redundant computation and improves efficiency. To enhance user-friendliness, we design a generative model based on Recurrent Neural Networks (RNNs), enabling automated and continuous explanation generation. Experiments on six real-world datasets with three target TGNNs show that GRExplainer outperforms existing baseline methods in generality, efficiency, and user-friendliness.
Document layout analysis is essential for downstream tasks such as information retrieval, extraction, OCR, and digitization. However, existing large-scale datasets like PubLayNet and DocBank lack fine-grained region labels and multilingual diversity, making them insufficient for representing complex document layouts. In contrast, human-annotated datasets such as M6Doc and D4LA offer richer labels and greater domain diversity, but are too small to train robust models and lack adequate multilingual coverage. This gap is especially pronounced for Indic documents, which encompass diverse scripts yet remain underrepresented in current datasets, further limiting progress in this space. To address these shortcomings, we introduce IndicDLP, a large-scale foundational document layout dataset spanning 11 representative Indic languages alongside English and 12 common document domains. Additionally, we curate UED-mini, a dataset derived from DocLayNet and M6Doc, to enhance pretraining and provide a solid foundation for Indic layout models. Our experiments demonstrate that fine-tuning existing English models on IndicDLP significantly boosts performance, validating its effectiveness. Moreover, models trained on IndicDLP generalize well beyond Indic layouts, making it a valuable resource for document digitization. This work bridges gaps in scale, diversity, and annotation granularity, driving inclusive and efficient document understanding.
Recently, contrastive learning (CL) plays an important role in exploring complementary information for multi-view clustering (MVC) and has attracted increasing attention. Nevertheless, real-world multi-view data suffer from data incompleteness or noise, resulting in rare-paired samples or mis-paired samples which significantly challenges the effectiveness of CL-based MVC. That is, rare-paired issue prevents MVC from extracting sufficient multi-view complementary information, and mis-paired issue causes contrastive learning to optimize the model in the wrong direction. To address these issues, we propose a unified CL-based MVC framework for enhancing clustering effectiveness on incomplete and noise multi-view data. First, to overcome the rare-paired issue, we design a global-graph guided contrastive learning, where all view samples construct a global-view affinity graph to form new sample pairs for fully exploring complementary information. Second, to mitigate the mis-paired issue, we propose a local-graph weighted contrastive learning, which leverages local neighbors to generate pair-wise weights to adaptively strength or weaken the pair-wise contrastive learning. Our method is imputation-free and can be integrated into a unified global-local graph-guided contrastive learning framework. Extensive experiments on both incomplete and noise settings of multi-view data demonstrate that our method achieves superior performance compared with state-of-the-art approaches.