What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Feb 20, 2025
Abstract:The widespread dissemination of rumors on social media has a significant impact on people's lives, potentially leading to public panic and fear. Rumors often evoke specific sentiments, resonating with readers and prompting sharing. To effectively detect and track rumors, it is essential to observe the fine-grained sentiments of both source and response message pairs as the rumor evolves over time. However, current rumor detection methods fail to account for this aspect. In this paper, we propose MSuf, the first multi-task suffix learning framework for rumor detection and tracking using time series dual (coupled) sentiments. MSuf includes three modules: (1) an LLM to extract sentiment intensity features and sort them chronologically; (2) a module that fuses the sorted sentiment features with their source text word embeddings to obtain an aligned embedding; (3) two hard prompts are combined with the aligned vector to perform rumor detection and sentiment analysis using one frozen LLM. MSuf effectively enhances the performance of LLMs for rumor detection with only minimal parameter fine-tuning. Evaluating MSuf on four rumor detection benchmarks, we find significant improvements compared to other emotion-based methods.
* work in progress
Via

Feb 21, 2025
Abstract:As voice assistants (VAs) become increasingly integrated into daily life, the need for emotion-aware systems that can recognize and respond appropriately to user emotions has grown. While significant progress has been made in speech emotion recognition (SER) and sentiment analysis, effectively addressing user emotions-particularly negative ones-remains a challenge. This study explores human emotional response strategies in VA interactions using a role-swapping approach, where participants regulate AI emotions rather than receiving pre-programmed responses. Through speech feature analysis and natural language processing (NLP), we examined acoustic and linguistic patterns across various emotional scenarios. Results show that participants favor neutral or positive emotional responses when engaging with negative emotional cues, highlighting a natural tendency toward emotional regulation and de-escalation. Key acoustic indicators such as root mean square (RMS), zero-crossing rate (ZCR), and jitter were identified as sensitive to emotional states, while sentiment polarity and lexical diversity (TTR) distinguished between positive and negative responses. These findings provide valuable insights for developing adaptive, context-aware VAs capable of delivering empathetic, culturally sensitive, and user-aligned responses. By understanding how humans naturally regulate emotions in AI interactions, this research contributes to the design of more intuitive and emotionally intelligent voice assistants, enhancing user trust and engagement in human-AI interactions.
* 19 pages, 6 figures
Via

Feb 26, 2025
Abstract:Multi-brand analysis based on review comments and ratings is a commonly used strategy to compare different brands in marketing. It can help consumers make more informed decisions and help marketers understand their brand's position in the market. In this work, we propose a multifacet hierarchical sentiment-topic model (MH-STM) to detect brand-associated sentiment polarities towards multiple comparative aspects from online customer reviews. The proposed method is built on a unified generative framework that explains review words with a hierarchical brand-associated topic model and the overall polarity score with a regression model on the empirical topic distribution. Moreover, a novel hierarchical Polya urn (HPU) scheme is proposed to enhance the topic-word association among topic hierarchy, such that the general topics shared by all brands are separated effectively from the unique topics specific to individual brands. The performance of the proposed method is evaluated on both synthetic data and two real-world review corpora. Experimental studies demonstrate that the proposed method can be effective in detecting reasonable topic hierarchy and deriving accurate brand-associated rankings on multi-aspects.
* 21 pages, 6 figures, 4 tables
Via

Feb 18, 2025
Abstract:Masked language modeling has become a widely adopted unsupervised technique to pre-train language models. However, the process of selecting tokens for masking is random, and the percentage of masked tokens is typically fixed for the entire training process. In this paper, we propose to adjust the masking ratio and to decide which tokens to mask based on a novel task-informed anti-curriculum learning scheme. First, we harness task-specific knowledge about useful and harmful tokens in order to determine which tokens to mask. Second, we propose a cyclic decaying masking ratio, which corresponds to an anti-curriculum schedule (from hard to easy). We exemplify our novel task-informed anti-curriculum by masking (TIACBM) approach across three diverse downstream tasks: sentiment analysis, text classification by topic, and authorship attribution. Our findings suggest that TIACBM enhances the ability of the model to focus on key task-relevant features, contributing to statistically significant performance gains across tasks. We release our code at https://github.com/JarcaAndrei/TIACBM.
Via

Feb 17, 2025
Abstract:Many existing approaches for learning from labeled data assume the existence of gold-standard labels. According to these approaches, inter-annotator disagreement is seen as noise to be removed, either through refinement of annotation guidelines, label adjudication, or label filtering. However, annotator disagreement can rarely be totally eradicated, especially on more subjective tasks such as sentiment analysis or hate speech detection where disagreement is natural. Therefore, a new approach to learning from labeled data, called data perspectivism, seeks to leverage inter-annotator disagreement to learn models that stay true to the inherent uncertainty of the task by treating annotations as opinions of the annotators, rather than gold-standard facts. Despite this conceptual grounding, existing methods under data perspectivism are limited to using disagreement as the sole source of annotation uncertainty. To expand the possibilities of data perspectivism, we introduce Subjective Logic Encodings (SLEs), a flexible framework for constructing classification targets that explicitly encodes annotations as opinions of the annotators. Based on Subjective Logic Theory, SLEs encode labels as Dirichlet distributions and provide principled methods for encoding and aggregating various types of annotation uncertainty -- annotator confidence, reliability, and disagreement -- into the targets. We show that SLEs are a generalization of other types of label encodings as well as how to estimate models to predict SLEs using a distribution matching objective.
* We make our code publicly available at
https://github.com/jvasilakes/SLEncodings
Via

Feb 13, 2025
Abstract:Conversational AI chatbots have become increasingly common within the customer service industry. Despite improvements in their emotional development, they often lack the authenticity of real customer service interactions or the competence of service providers. By comparing emotion-sensitive and emotion-insensitive LLM-based chatbots across 30 participants, we aim to explore how emotional sensitivity in chatbots influences perceived competence and overall customer satisfaction in service interactions. Additionally, we employ sentiment analysis techniques to analyze and interpret the emotional content of user inputs. We highlight that perceptions of chatbot trustworthiness and competence were higher in the case of the emotion-sensitive chatbot, even if issue resolution rates were not affected. We discuss implications of improved user satisfaction from emotion-sensitive chatbots and potential applications in support services.
* 7 pages, 2 figures, 1 table
Via

Feb 03, 2025
Abstract:In the era of pervasive internet use and the dominance of social networks, researchers face significant challenges in Persian text mining including the scarcity of adequate datasets in Persian and the inefficiency of existing language models. This paper specifically tackles these challenges, aiming to amplify the efficiency of language models tailored to the Persian language. Focusing on enhancing the effectiveness of sentiment analysis, our approach employs an aspect-based methodology utilizing the ParsBERT model, augmented with a relevant lexicon. The study centers on sentiment analysis of user opinions extracted from the Persian website 'Digikala.' The experimental results not only highlight the proposed method's superior semantic capabilities but also showcase its efficiency gains with an accuracy of 88.2% and an F1 score of 61.7. The importance of enhancing language models in this context lies in their pivotal role in extracting nuanced sentiments from user-generated content, ultimately advancing the field of sentiment analysis in Persian text mining by increasing efficiency and accuracy.
* Journal of AI and Data Mining, 2024, 12(1): 1-14
Via

Feb 05, 2025
Abstract:We present LLaVAC, a method for constructing a classifier for multimodal sentiment analysis. This method leverages fine-tuning of the Large Language and Vision Assistant (LLaVA) to predict sentiment labels across both image and text modalities. Our approach involves designing a structured prompt that incorporates both unimodal and multimodal labels to fine-tune LLaVA, enabling it to perform sentiment classification effectively. Experiments on the MVSA-Single dataset demonstrate that LLaVAC outperforms existing methods in multimodal sentiment analysis across three data processing procedures. The implementation of LLaVAC is publicly available at https://github.com/tchayintr/llavac.
Via

Feb 08, 2025
Abstract:Analyzing stocks and making higher accurate predictions on where the price is heading continues to become more and more challenging therefore, we designed a new financial algorithm that leverages social media sentiment analysis to enhance the prediction of key stock earnings and associated volatility. Our model integrates sentiment analysis and data retrieval techniques to extract critical information from social media, analyze company financials, and compare sentiments between Wall Street and the general public. This approach aims to provide investors with timely data to execute trades based on key events, rather than relying on long-term stock holding strategies. The stock market is characterized by rapid data flow and fluctuating community sentiments, which can significantly impact trading outcomes. Stock forecasting is complex given its stochastic dynamic. Standard traditional prediction methods often overlook key events and media engagement, focusing its practice into long-term investment options. Our research seeks to change the stochastic dynamic to a more predictable environment by examining the impact of media on stock volatility, understanding and identifying sentiment differences between Wall Street and retail investors, and evaluating the impact of various media networks in predicting earning reports.
Via

Feb 11, 2025
Abstract:While self-attention has been instrumental in the success of Transformers, it can lead to over-concentration on a few tokens during training, resulting in suboptimal information flow. Enforcing doubly-stochastic constraints in attention matrices has been shown to improve structure and balance in attention distributions. However, existing methods rely on iterative Sinkhorn normalization, which is computationally costly. In this paper, we introduce a novel, fully parallelizable doubly-stochastic attention mechanism based on sliced optimal transport, leveraging Expected Sliced Transport Plans (ESP). Unlike prior approaches, our method enforces double stochasticity without iterative Sinkhorn normalization, significantly enhancing efficiency. To ensure differentiability, we incorporate a temperature-based soft sorting technique, enabling seamless integration into deep learning models. Experiments across multiple benchmark datasets, including image classification, point cloud classification, sentiment analysis, and neural machine translation, demonstrate that our enhanced attention regularization consistently improves performance across diverse applications.
Via
