Music generation is the task of generating music or music-like sounds from a model or algorithm.
Recent advancements have brought generated music closer to human-created compositions, yet evaluating these models remains challenging. While human preference is the gold standard for assessing quality, translating these subjective judgments into objective metrics, particularly for text-audio alignment and music quality, has proven difficult. In this work, we generate 6k songs using 12 state-of-the-art models and conduct a survey of 15k pairwise audio comparisons with 2.5k human participants to evaluate the correlation between human preferences and widely used metrics. To the best of our knowledge, this work is the first to rank current state-of-the-art music generation models and metrics based on human preference. To further the field of subjective metric evaluation, we provide open access to our dataset of generated music and human evaluations.




Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.
We present a method for fine-grained control over music generation through inference-time interventions on an autoregressive generative music transformer called MusicGen. Our approach enables timbre transfer, style transfer, and genre fusion by steering the residual stream using weights of linear probes trained on it, or by steering the attention layer activations in a similar manner. We observe that modelling this as a regression task provides improved performance, hypothesizing that the mean-squared-error better preserve meaningful directional information in the activation space. Combined with the global conditioning offered by text prompts in MusicGen, our method provides both global and local control over music generation. Audio samples illustrating our method are available at our demo page.
We present Sleeping-DISCO 9M, a large-scale pre-training dataset for music and song. To the best of our knowledge, there are no open-source high-quality dataset representing popular and well-known songs for generative music modeling tasks such as text-music, music-captioning, singing-voice synthesis, melody reconstruction and cross-model retrieval. Past contributions focused on isolated and constrained factors whose core perspective was to create synthetic or re-recorded music corpus (e.g. GTSinger, M4Singer) and arbitrarily large-scale audio datasets (e.g. DISCO-10M and LAIONDISCO-12M) had been another focus for the community. Unfortunately, adoption of these datasets has been below substantial in the generative music community as these datasets fail to reflect real-world music and its flavour. Our dataset changes this narrative and provides a dataset that is constructed using actual popular music and world-renowned artists.
Enabling virtual humans to dynamically and realistically respond to diverse auditory stimuli remains a key challenge in character animation, demanding the integration of perceptual modeling and motion synthesis. Despite its significance, this task remains largely unexplored. Most previous works have primarily focused on mapping modalities like speech, audio, and music to generate human motion. As of yet, these models typically overlook the impact of spatial features encoded in spatial audio signals on human motion. To bridge this gap and enable high-quality modeling of human movements in response to spatial audio, we introduce the first comprehensive Spatial Audio-Driven Human Motion (SAM) dataset, which contains diverse and high-quality spatial audio and motion data. For benchmarking, we develop a simple yet effective diffusion-based generative framework for human MOtion generation driven by SPatial Audio, termed MOSPA, which faithfully captures the relationship between body motion and spatial audio through an effective fusion mechanism. Once trained, MOSPA could generate diverse realistic human motions conditioned on varying spatial audio inputs. We perform a thorough investigation of the proposed dataset and conduct extensive experiments for benchmarking, where our method achieves state-of-the-art performance on this task. Our model and dataset will be open-sourced upon acceptance. Please refer to our supplementary video for more details.
Despite recent advancements in music generation systems, their application in film production remains limited, as they struggle to capture the nuances of real-world filmmaking, where filmmakers consider multiple factors-such as visual content, dialogue, and emotional tone-when selecting or composing music for a scene. This limitation primarily stems from the absence of comprehensive datasets that integrate these elements. To address this gap, we introduce Open Screen Sound Library (OSSL), a dataset consisting of movie clips from public domain films, totaling approximately 36.5 hours, paired with high-quality soundtracks and human-annotated mood information. To demonstrate the effectiveness of our dataset in improving the performance of pre-trained models on film music generation tasks, we introduce a new video adapter that enhances an autoregressive transformer-based text-to-music model by adding video-based conditioning. Our experimental results demonstrate that our proposed approach effectively enhances MusicGen-Medium in terms of both objective measures of distributional and paired fidelity, and subjective compatibility in mood and genre. The dataset and code are available at https://havenpersona.github.io/ossl-v1.
The creativity of classical music arises not only from composers who craft the musical sheets but also from performers who interpret the static notations with expressive nuances. This paper addresses the challenge of generating classical piano performances from scratch, aiming to emulate the dual roles of composer and pianist in the creative process. We introduce the Expressive Compound Word (ECP) representation, which effectively captures both the metrical structure and expressive nuances of classical performances. Building on this, we propose the Expressive Music Variational AutoEncoder (XMVAE), a model featuring two branches: a Vector Quantized Variational AutoEncoder (VQ-VAE) branch that generates score-related content, representing the Composer, and a vanilla VAE branch that produces expressive details, fulfilling the role of Pianist. These branches are jointly trained with similar Seq2Seq architectures, leveraging a multiscale encoder to capture beat-level contextual information and an orthogonal Transformer decoder for efficient compound tokens decoding. Both objective and subjective evaluations demonstrate that XMVAE generates classical performances with superior musical quality compared to state-of-the-art models. Furthermore, pretraining the Composer branch on extra musical score datasets contribute to a significant performance gain.
Integrated sensing and communication (ISAC) is a promising candidate technology for 6G due to its improvement in spectral efficiency and energy efficiency. Orthogonal frequency division multiplexing (OFDM) signal is a mainstream candidate ISAC waveform. However, there are inter-symbol interference (ISI) and inter-carrier interference (ICI) when the round-trip delay exceeds the cyclic prefix (CP) duration for OFDM signals, which limits the maximum sensing range of ISAC system. When detecting a long-range target, the wide beam inevitably covers the close-range target, of which the echo's power is much larger than that of the long-range target. In order to tackle the above problem, a multiple signal classification (MUSIC) and least squares (LS)-based spatial signal separation method is proposed to separate the echo signals reflected from different targets. Moreover, a coherent compensation-based sensing signal processing method at the receiver is proposed to enhance the signal to interference plus noise power ratio (SINR) of the OFDM block for generating the range-Doppler map (RDM) with higher SINR. Simulation results reveal that the proposed method greatly enhances the SINR of RDM by 10 dB for a target at 500 m compared with two-dimensional fast Fourier transform (2D-FFT) method. Besides, the detection probability is also significantly improved compared to the benchmarking method.
The ultimate purpose of generative music AI is music production. The studio-lab, a social form within the art-science branch of cross-disciplinarity, is a way to advance music production with AI music models. During a studio-lab experiment involving researchers, music producers, and an AI model for music generating bass-like audio, it was observed that the producers used the model's output to convey two or more pitches with a single harmonic complex tone, which in turn revealed that the model had learned to generate structured and coherent simultaneous melodic lines using monophonic sequences of harmonic complex tones. These findings prompt a reconsideration of the long-standing debate on whether humans can perceive harmonics as distinct pitches and highlight how generative AI can not only enhance musical creativity but also contribute to a deeper understanding of music.
Recent progress in text-to-music generation has enabled models to synthesize high-quality musical segments, full compositions, and even respond to fine-grained control signals, e.g. chord progressions. State-of-the-art (SOTA) systems differ significantly across many dimensions, such as training datasets, modeling paradigms, and architectural choices. This diversity complicates efforts to evaluate models fairly and pinpoint which design choices most influence performance. While factors like data and architecture are important, in this study we focus exclusively on the modeling paradigm. We conduct a systematic empirical analysis to isolate its effects, offering insights into associated trade-offs and emergent behaviors that can guide future text-to-music generation systems. Specifically, we compare the two arguably most common modeling paradigms: Auto-Regressive decoding and Conditional Flow-Matching. We conduct a controlled comparison by training all models from scratch using identical datasets, training configurations, and similar backbone architectures. Performance is evaluated across multiple axes, including generation quality, robustness to inference configurations, scalability, adherence to both textual and temporally aligned conditioning, and editing capabilities in the form of audio inpainting. This comparative study sheds light on distinct strengths and limitations of each paradigm, providing actionable insights that can inform future architectural and training decisions in the evolving landscape of text-to-music generation. Audio sampled examples are available at: https://huggingface.co/spaces/ortal1602/ARvsFM