What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Jun 14, 2025
Abstract:Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.
* Accepted by ISMIR 2025
Via

May 26, 2025
Abstract:Quantum computing can be employed in computer-aided music composition to control various attributes of the music at different structural levels. This article describes the application of quantum simulation to model compositional decision making, the simulation of quantum particle tracking to produce noise-based timbres, the use of basis state vector rotation to cause changing probabilistic behaviors in granular harmonic textures, and the exploitation of quantum measurement error to cause noisy perturbations of spatial soundpaths. We describe the concepts fundamental to these techniques, we provide algorithms and software enacting them, and we provide examples demonstrating their implementation in computer-generated music.
Via

May 21, 2025
Abstract:Moonbeam is a transformer-based foundation model for symbolic music, pretrained on a large and diverse collection of MIDI data totaling 81.6K hours of music and 18 billion tokens. Moonbeam incorporates music-domain inductive biases by capturing both absolute and relative musical attributes through the introduction of a novel domain-knowledge-inspired tokenization method and Multidimensional Relative Attention (MRA), which captures relative music information without additional trainable parameters. Leveraging the pretrained Moonbeam, we propose 2 finetuning architectures with full anticipatory capabilities, targeting 2 categories of downstream tasks: symbolic music understanding and conditional music generation (including music infilling). Our model outperforms other large-scale pretrained music models in most cases in terms of accuracy and F1 score across 3 downstream music classification tasks on 4 datasets. Moreover, our finetuned conditional music generation model outperforms a strong transformer baseline with a REMI-like tokenizer. We open-source the code, pretrained model, and generated samples on Github.
Via

May 29, 2025
Abstract:We present a keyframe-based framework for generating music-synchronized, choreography aware animal dance videos. Starting from a few keyframes representing distinct animal poses -- generated via text-to-image prompting or GPT-4o -- we formulate dance synthesis as a graph optimization problem: find the optimal keyframe structure that satisfies a specified choreography pattern of beats, which can be automatically estimated from a reference dance video. We also introduce an approach for mirrored pose image generation, essential for capturing symmetry in dance. In-between frames are synthesized using an video diffusion model. With as few as six input keyframes, our method can produce up to 30 second dance videos across a wide range of animals and music tracks.
Via

May 06, 2025
Abstract:The recent surge in the popularity of diffusion models for image synthesis has attracted new attention to their potential for generation tasks in other domains. However, their applications to symbolic music generation remain largely under-explored because symbolic music is typically represented as sequences of discrete events and standard diffusion models are not well-suited for discrete data. We represent symbolic music as image-like pianorolls, facilitating the use of diffusion models for the generation of symbolic music. Moreover, this study introduces a novel diffusion model that incorporates our proposed Transformer-Mamba block and learnable wavelet transform. Classifier-free guidance is utilised to generate symbolic music with target chords. Our evaluation shows that our method achieves compelling results in terms of music quality and controllability, outperforming the strong baseline in pianoroll generation. Our code is available at https://github.com/jinchengzhanggg/proffusion.
Via

May 23, 2025
Abstract:Music-driven 3D dance generation has attracted increasing attention in recent years, with promising applications in choreography, virtual reality, and creative content creation. Previous research has generated promising realistic dance movement from audio signals. However, traditional methods underutilize genre conditioning, often treating it as auxiliary modifiers rather than core semantic drivers. This oversight compromises music-motion synchronization and disrupts dance genre continuity, particularly during complex rhythmic transitions, thereby leading to visually unsatisfactory effects. To address the challenge, we propose MEGADance, a novel architecture for music-driven 3D dance generation. By decoupling choreographic consistency into dance generality and genre specificity, MEGADance demonstrates significant dance quality and strong genre controllability. It consists of two stages: (1) High-Fidelity Dance Quantization Stage (HFDQ), which encodes dance motions into a latent representation by Finite Scalar Quantization (FSQ) and reconstructs them with kinematic-dynamic constraints, and (2) Genre-Aware Dance Generation Stage (GADG), which maps music into the latent representation by synergistic utilization of Mixture-of-Experts (MoE) mechanism with Mamba-Transformer hybrid backbone. Extensive experiments on the FineDance and AIST++ dataset demonstrate the state-of-the-art performance of MEGADance both qualitatively and quantitatively. Code will be released upon acceptance.
* arXiv admin note: text overlap with arXiv:2505.14222
Via

May 21, 2025
Abstract:Music-to-dance generation represents a challenging yet pivotal task at the intersection of choreography, virtual reality, and creative content generation. Despite its significance, existing methods face substantial limitation in achieving choreographic consistency. To address the challenge, we propose MatchDance, a novel framework for music-to-dance generation that constructs a latent representation to enhance choreographic consistency. MatchDance employs a two-stage design: (1) a Kinematic-Dynamic-based Quantization Stage (KDQS), which encodes dance motions into a latent representation by Finite Scalar Quantization (FSQ) with kinematic-dynamic constraints and reconstructs them with high fidelity, and (2) a Hybrid Music-to-Dance Generation Stage(HMDGS), which uses a Mamba-Transformer hybrid architecture to map music into the latent representation, followed by the KDQS decoder to generate 3D dance motions. Additionally, a music-dance retrieval framework and comprehensive metrics are introduced for evaluation. Extensive experiments on the FineDance dataset demonstrate state-of-the-art performance. Code will be released upon acceptance.
Via

May 26, 2025
Abstract:Computational dance generation is crucial in many areas, such as art, human-computer interaction, virtual reality, and digital entertainment, particularly for generating coherent and expressive long dance sequences. Diffusion-based music-to-dance generation has made significant progress, yet existing methods still struggle to produce physically plausible motions. To address this, we propose Plausibility-Aware Motion Diffusion (PAMD), a framework for generating dances that are both musically aligned and physically realistic. The core of PAMD lies in the Plausible Motion Constraint (PMC), which leverages Neural Distance Fields (NDFs) to model the actual pose manifold and guide generated motions toward a physically valid pose manifold. To provide more effective guidance during generation, we incorporate Prior Motion Guidance (PMG), which uses standing poses as auxiliary conditions alongside music features. To further enhance realism for complex movements, we introduce the Motion Refinement with Foot-ground Contact (MRFC) module, which addresses foot-skating artifacts by bridging the gap between the optimization objective in linear joint position space and the data representation in nonlinear rotation space. Extensive experiments show that PAMD significantly improves musical alignment and enhances the physical plausibility of generated motions. This project page is available at: https://mucunzhuzhu.github.io/PAMD-page/.
Via

Jun 16, 2025
Abstract:This study explores the extent to which national music preferences reflect underlying cultural values. We collected long-term popular music data from YouTube Music Charts across 62 countries, encompassing both Western and non-Western regions, and extracted audio embeddings using the CLAP model. To complement these quantitative representations, we generated semantic captions for each track using LP-MusicCaps and GPT-based summarization. Countries were clustered based on contrastive embeddings that highlight deviations from global musical norms. The resulting clusters were projected into a two-dimensional space via t-SNE for visualization and evaluated against cultural zones defined by the World Values Survey (WVS). Statistical analyses, including MANOVA and chi-squared tests, confirmed that music-based clusters exhibit significant alignment with established cultural groupings. Furthermore, residual analysis revealed consistent patterns of overrepresentation, suggesting non-random associations between specific clusters and cultural zones. These findings indicate that national-level music preferences encode meaningful cultural signals and can serve as a proxy for understanding global cultural boundaries.
Via

Jun 24, 2025
Abstract:We propose Kling-Foley, a large-scale multimodal Video-to-Audio generation model that synthesizes high-quality audio synchronized with video content. In Kling-Foley, we introduce multimodal diffusion transformers to model the interactions between video, audio, and text modalities, and combine it with a visual semantic representation module and an audio-visual synchronization module to enhance alignment capabilities. Specifically, these modules align video conditions with latent audio elements at the frame level, thereby improving semantic alignment and audio-visual synchronization. Together with text conditions, this integrated approach enables precise generation of video-matching sound effects. In addition, we propose a universal latent audio codec that can achieve high-quality modeling in various scenarios such as sound effects, speech, singing, and music. We employ a stereo rendering method that imbues synthesized audio with a spatial presence. At the same time, in order to make up for the incomplete types and annotations of the open-source benchmark, we also open-source an industrial-level benchmark Kling-Audio-Eval. Our experiments show that Kling-Foley trained with the flow matching objective achieves new audio-visual SOTA performance among public models in terms of distribution matching, semantic alignment, temporal alignment and audio quality.
Via
